【图书推荐】《PyTorch深度学习与计算机视觉实践》

本书重点

掌握深度学习基本原理、算法与PyTorch框架用法

实战人脸识别、图像识别、图像生成、目标检测、图像分割、图像迁移应用

完整的案例实现可以作为课题研究素材、毕业论文素材,适合相关人士收藏

典型案例

  • PyTorch卷积层的MNIST分类实战
  • PyTorch数据处理与模型可视化
  • 基于深度可分离膨胀卷积的MNIST手写体识别
  • ResNet实战CIFAR-10数据集分类
  • 基于OpenCV与PyTorch的人脸发现与识别实战
  • 基于循环神经网络的中文情感分类实战
  • 基于注意力机制的图像识别实战
  • 基于Diffusion Model的从随机到可控图像生成实战
  • 基于注意力的单目摄像头目标检测实战
  • 基于注意力与Unet的全画幅适配图像全景分割实战
  • 基于预训练模型的可控零样本图像迁移合成实战

内容简介

在人工智能的浩瀚星空中,深度学习犹如一颗耀眼的明星,引领着计算机视觉技术的发展。《Py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值