本书重点
掌握深度学习基本原理、算法与PyTorch框架用法
实战人脸识别、图像识别、图像生成、目标检测、图像分割、图像迁移应用
完整的案例实现可以作为课题研究素材、毕业论文素材,适合相关人士收藏
典型案例
- PyTorch卷积层的MNIST分类实战
- PyTorch数据处理与模型可视化
- 基于深度可分离膨胀卷积的MNIST手写体识别
- ResNet实战CIFAR-10数据集分类
- 基于OpenCV与PyTorch的人脸发现与识别实战
- 基于循环神经网络的中文情感分类实战
- 基于注意力机制的图像识别实战
- 基于Diffusion Model的从随机到可控图像生成实战
- 基于注意力的单目摄像头目标检测实战
- 基于注意力与Unet的全画幅适配图像全景分割实战
- 基于预训练模型的可控零样本图像迁移合成实战
内容简介
在人工智能的浩瀚星空中,深度学习犹如一颗耀眼的明星,引领着计算机视觉技术的发展。《Py