《扣子开发AI Agent智能体应用》全书案例重现

《扣子开发AI Agent智能体应用(人工智能技术丛书)》(宋立桓,王东健,陈铭毅,程东升)【摘要 书评 试读】- 京东图书

《扣子开发智能体应用》配套的课件和视频下载-CSDN博客

【图书介绍】《扣子开发AI Agent智能体应用》_智能体开发高职课程有哪些-CSDN博客

登录扣子开发平台的方法-CSDN博客

2.6.2小节  扣子平台个人免费版、个人进阶版、团队版以及企业版的说明-CSDN博客

3.2.1小节 扣子平台给智能体绑定插件-CSDN博客

3.3节  开发自定义插件案例:查询股票价格-CSDN博客

3.5节  扣子开发最新头条新闻智能体-CSDN博客

第4章  扣子工作流详解-CSDN博客

4.4节  扣子工作流的常见节点-CSDN博客

4.5节  扣子工作流实战演练_扣子工作流 亲子对话育儿类型-CSDN博客

第5.5节   用Coze开发汽车行业智能客服智能体-CSDN博客

第7章   扣子数据库实战案例:搭建AI登记助手-CSDN博客

第8章 扣子开发优质图文生成器-CSDN博客

第9章 扣子开发AI Agent智能体应用-第9章 看图学英语智能助手实现-CSDN博客

第10章  图书第十章案例抖音文案提取与仿写助手-CSDN博客

第11章 扣子开发智能室内设计师Agent-CSDN博客

第12章  扣子开发企业营销宣传海报自动生成器-CSDN博客

第13章  扣子开发智能客服Agent-CSDN博客
 

第14章iSlide插件提供的节点升级了,没关系,看这篇博文截图  

第14章  最新版扣子开发自动生成PPT的智能办公助手-CSDN博客

第16章 《扣子开发AI Agent智能体应用》案例重现_开发agent智能体的书籍-CSDN博客

赠书已经送完了

博主免费赠书《扣子开发AI Agent智能体应用》8本。

想要赠书的朋友,请在本文后面加评论,要求赠书。

收到赠书后,受赠书的朋友,两周内在CSDN博客上发一遍博文,内容为重现一下本书9个案例中的一个。

要求两周内完成,是因为这本书两周能看完。

评论后可私信联系博主,千万记得留下快递信息,感谢。

​​​

资源下载链接为: https://pan.quark.cn/s/790f7ffa6527 在一维运动场景中,小车从初始位置 x=-100 出发,目标是到达 x=0 的位置,位置坐标 x 作为受控对象,通过增量式 PID 控制算法调节小车的运动状态。 系统采用的位置迭代公式为 x (k)=x (k-1)+v (k-1) dt,其中 dt 为仿真过程中的恒定时间间隔,因此速度 v 成为主要的调节量。通过调节速度参数,实现对小车位置的精确控制,最终生成位置 - 时间曲线的仿真结果。 在参数调节实验中,比例调节系数 Kp 的影响十分显著。从仿真曲线可以清晰观察到,当增大 Kp 值时,系统的响应速度明显加快,小车能够更快地收敛到目标位置,缩短了稳定时间。这表明比例调节在加快系统响应方面发挥着关键作用,适当增大比例系数可有效提升系统的动态性能。 积分调节系数 Ki 的调节则呈现出不同的特性。实验数据显示,当增大 Ki 值时,系统运动过程中的波动幅度明显增大,位置曲线出现更剧烈的震荡。但与此同时,小车位置的变化速率也有所提高,在动态调整过程中能够更快地接近目标值。这说明积分调节虽然会增加系统的波动性,但对加快位置变化过程具有积极作用。 通过一系列参数调试实验,清晰展现了比例系数和积分系数在增量式 PID 控制系统中的不同影响规律,为优化控制效果提供了直观的参考依据。合理匹配 Kp 和 Ki 参数,能够在保证系统稳定性的同时,兼顾响应速度和调节精度,实现小车位置的高效控制。
### AI智能体开发的知识体系 AI智能体开发涉及多个学科和技术领域的交叉融合,主要包括以下几个方面: #### 1. **基础知识** - **人工智能理论基础** 开发者需掌握机器学习、深度学习以及强化学习的基础理论。这些技术构成了智能体的核心能力,使其能够通过数据训练来完成复杂的任务[^1]。 - **计算机科学原理** 需要熟悉算法与数据结构的设计原则,这是构建高效智能体的关键所在。此外,操作系统、网络编程等相关知识也是不可或缺的一部分。 #### 2. **智能体架构设计** - **多层架构模式** 智能体通常采用分层架构,分为感知层、决策层和执行层。这种模块化设计有助于提高系统的可扩展性和灵活性[^2]。 - **状态空间建模** 设计智能体时需要定义其运行的状态空间模型,这决定了智能体如何理解环境并与之交互。常见的方法包括马尔科夫决策过程(MDP)及其变种。 #### 3. **关键技术实现** - **感知与认知处理** 利用传感器输入或其他形式的数据源,智能体可以实时获取外界信息并进行分析。这一环节可能涉及到图像识别、自然语言处理等具体技术的应用。 - **行为规划与控制** 基于当前所处的情境,智能体会制定相应的行动计划并通过反馈机制不断调整优化自己的表现。此部分往往依赖于先进的搜索算法或者策略梯度估计法。 #### 4. **工具链与框架支持** - **主流开发平台** TensorFlow 和 PyTorch 是目前最流行的两种用于搭建神经网络模型的开源库,在实际项目中被广泛应用智能体的学习阶段;而 ROS (Robot Operating System) 则提供了丰富的机器人仿真功能,适合物理世界中的移动型代理研发工作。 下面是一个简单的基于PyTorch实现Q-learning的例子: ```python import torch class QLearningAgent(torch.nn.Module): def __init__(self, state_dim, action_dim): super(QLearningAgent, self).__init__() self.fc = torch.nn.Linear(state_dim, action_dim) def forward(self, x): q_values = self.fc(x) return q_values def select_action(self, state, epsilon=0.1): if torch.rand(1).item() < epsilon: return torch.randint(low=0, high=self.fc.out_features, size=(1,)) else: with torch.no_grad(): q_values = self.forward(state) return torch.argmax(q_values).unsqueeze(0) ``` #### 5. **测试与评估标准** - **性能指标设定** 对于不同应用场景下的智能体来说,评价维度会有所差异。例如游戏场景下关注胜率或得分高低,而在自动驾驶领域则更看重安全性及反应速度等方面的表现。 ---
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值