【新书推荐】《智能运维实践》

本书重点

详解智能运维的整体框架以及机器学习、深度学习和自然语言处理的常用算法,实战日志异常检测、根因定位、网络流量异常检测等项目案例,配套示例源码、PPT课件、教学大纲。

内容简介

智能运维的核心目标包括故障预测、自动化修复、效能优化,最终推动运维从“经验驱动”向“数据驱动”转型,降低非计划停机损失并提升系统可靠性。《智能运维实践》从智能运维基本理论入手,详细讲解智能运维方法和应用案例,帮助读者掌握智能运维的核心技术。本书配套示例源码、PPT课件、教学大纲。

《智能运维实践》共分12章,内容包括智能运维概述、智能运维框架、搭建Ubuntu运维和开发环境、Python编程基础、数据采集与存储、数据预处理、机器学习、深度学习、自然语言处理、日志异常检测、面向微服务的根因定位、网络流量异常检测。

适合读者

《智能运维实践》理论与实践相结合,从基础概念出发,逐步深入技术细节,适合智能运维初学者、智能运维应用开发人员、系统与网络运维人员阅读。《智能运维实践》也适合作为高等院校或高职高专院校智能运维课程的教材。

作者简介

苏娜,副教授,工学博士,硕士生导师,中国自动化学会网络信息服务专业委员会委员,中国自动化学会会员,泰安市高层次人才。主要研究方向为数据挖掘、人工智能等。主持或参与10余项科研项目,发表学术论文20余篇,撰写专著1部,取得发明专利2项、软件著作权多项。

孙琳,学术副教授,硕士生导师。主要研究方向为数据分析与数据挖掘等。主持并参与多项省部级科研项目,发表科研、教学论文十余篇,其中多篇被SCI、EI检索。

王鸽,副教授,博士,硕士生导师。主要研究方向为大数据分析、人工智能、自然语言处理、机器学习等。主持并参与多项省部级科研项目,发表论文20余篇,参编教材4部,取得发明专利2项、软件著作权多项。

前言

本书背景

近年来,随着云计算、大数据和人工智能技术的广泛应用,传统运维模式在应对复杂IT系统时逐渐显现出局限性。智能运维(AIOps)作为运维领域的新兴方向,尝试通过引入机器学习、自动化分析等技术来提升运维效率,但其理论体系和技术实践仍在不断演进中。

我们编写本书的初衷是为读者提供一个相对系统的智能运维学习参考。书中内容基于现有的AIOps技术实践整理而成,虽然力求全面,但受限于编者的水平和智能运维领域的发展速度,难免存在不足之处。我们期待通过本书抛砖引玉,与广大读者共同探讨智能运维的未来发展方向。

本书目的

本书旨在为读者构建智能运维领域的系统性学习路径,通过理论与实践相结合的方式,帮助不同背景的读者掌握AIOps的核心技术。本书注重知识体系的完整性和实践指导性,力求使学术研究者获得理论支撑,同时让工程实践者掌握落地方法,推动智能运维技术在实际工作场景中的应用与创新。

本书内容概述

本书系统介绍智能运维(AIOps)的核心技术与实践应用,内容涵盖智能运维的基本概念、技术框架、开发环境搭建等基础知识,并深入讲解数据采集与存储、数据预处理、机器学习、深度学习等关键技术。书中特别设计了日志异常检测、微服务根因定位、网络流量异常检测等典型运维场景的实战案例,通过Python代码帮助读者掌握智能运维的实践方法。

本书特点

(1)理论与实践相结合:不仅讲解算法原理,还提供完整的代码实现和案例分析。

(2)案例驱动:围绕真实运维场景(如日志分析、故障定位等)展开,增强实用性,方便读者在类似的场景中直接借鉴。

(3)内容安排循序渐进:从基础环境搭建到高阶算法应用,适合不同水平的读者学习。

(4)开源工具支持:采用Python、scikit-learn、PyTorch等主流技术栈,确保可复现性。

本书配套资源

本书配套实例源码、PPT课件与教学大纲,读者使用自己的微信扫描右侧的二维码即可获取。如果在阅读过程中发现问题或有任何建议,请下载资源中提供的相关电子邮箱或微信进行联系。

本书适合的读者

本书采用循序渐进的方式组织内容,从基础概念到算法原理再到工程实践,既适合作为高校智能运维课程的教材,也可供运维工程师和开发人员参考使用。书中提供的Ubuntu环境配置指南、Python编程示例和智能运维示例代码,能够有效降低学习门槛,使读者快速上手并应用于实际工作场景。

作者与鸣谢

本书作者苏娜、孙琳和王鸽均为高校计算机专业教师,主要从事智能运维、大数据分析与挖掘等方面的研究和教学工作。

本书的编写得到了众多专家、同行以及开源社区的大力支持,在此表示衷心的感谢。特别感谢裴厚清、徐力、刘文羽三位同学在实验验证和资料整理方面对本书作出的贡献。

同时,本书的顺利出版离不开清华大学出版社各位编辑老师的专业指导和辛勤付出,在此谨致谢忱。

我们诚挚欢迎广大读者提出宝贵意见和建议,以便在未来的版本中持续优化和改进。

作  者    

2025年3月

目录

目    录
第1章  智能运维概述 1
1.1  引言 1
1.1.1  智能运维的兴起 1
1.1.2  智能运维的发展历程 2
1.1.3  智能运维的技术基础 3
1.1.4  智能运维的目标 4
1.2  智能运维的应用 4
1.2.1  智能运维的应用领域 4
1.2.2  智能运维要解决的问题 5
1.3  智能运维的相关标准 6
1.3.1  运维相关的现有标准 7
1.3.2  人工智能的现有标准 9
1.3.3  智能运维的现有标准 10
第2章  智能运维框架 12
2.1  整体框架 12
2.2  组织治理 13
2.3  场景实现 14
2.4  能力域 15
第3章  搭建Ubuntu运维和开发环境 20
3.1  Ubuntu安装准备 20
3.2  安装Oracle VM VirtualBox 22
3.3  安装Ubuntu服务器系统 26
3.3.1  创建虚拟机 26
3.3.2  安装Ubuntu Server系统 32
3.4  搭建VS Code远程开发环境 40
第4章  Python编程基础 44
4.1  Python快速入门 44
4.1.1  Python简介 44
4.1.2  数据类型 47
4.1.3  运算符 50
4.1.4  函数 52
4.1.5  程序控制结构 53
4.1.6  类和对象 54
4.2  NumPy快速入门 55
4.2.1  数组创建与初始化 55
4.2.2  数组的核心属性、操作与计算 56
4.2.3  数学运算与统计 60
4.3  Pandas快速入门 61
4.3.1  Pandas系列 61
4.3.2  Pandas数据帧 65
4.3.3  Pandas示例 69
第5章  数据采集与存储 84
5.1  数据采集 84
5.1.1  数据采集方法 85
5.1.2  数据采集工具 86
5.1.3  数据采集的关键考虑因素 88
5.2  数据存储 88
5.2.1  数据存储类型 89
5.2.2  数据存储架构 90
5.2.3  数据备份与恢复 90
5.2.4  数据安全 91
5.2.5  数据管理与优化 91
5.2.6  数据访问与检索 92
第6章  数据预处理 94
6.1  数据清洗 95
6.1.1  处理缺失值 95
6.1.2  去除重复记录 106
6.2  数据集成 112
6.3  数据转换 113
6.4  数据离散化 119
6.4.1  等距离散化 120
6.4.2  等频离散化 120
6.4.3  基于聚类的离散化 121
6.4.4  基于决策树的离散化 122
6.5  特征选择 123
6.5.1  特征选择方法 123
6.5.2  特征选择示例 124
第7章  机器学习 129
7.1  回归方法 129
7.1.1  常见的回归方法 130
7.1.2  回归模型的评估与优化 131
7.1.3  回归模型的示例 132
7.2  分类方法 140
7.2.1  分类的一般流程 140
7.2.2  评估指标 141
7.3  决策树 143
7.3.1  基本概念 143
7.3.2  构建步骤 145
7.3.3  决策树示例 147
7.3.4  决策树的特点 152
7.4  其他分类算法 152
7.4.1  随机森林 152
7.4.2  支持向量机 153
7.4.3  贝叶斯分类器 156
7.4.4  分类算法小结与示例 158
7.5  聚类分析 165
7.5.1  划分聚类方法 165
7.5.2  基于密度的聚类方法及示例 169
7.5.3  层次聚类方法 173
7.5.4  基于网格的聚类方法 173
7.6  关联分析 174
7.6.1  关联分析相关概念 174
7.6.2  FP-Growth算法 175
7.6.3  关联分析示例 176
7.7  时间序列分析 181
7.7.1  时间序列的基本概念 181
7.7.2  时间序列的平稳性 181
7.7.3  时间序列的建模方法 182
7.7.4  时间序列的预测 183
7.7.5  时间序列分析示例 184
7.8  异常点检测 192
7.8.1  异常点检测概述 192
7.8.2  异常点检测方法 193
7.8.3  异常点检测示例 193
第8章  深度学习 199
8.1  深度学习基础 199
8.2  卷积神经网络 202
8.2.1  CNN的基本原理 202
8.2.2  CNN应用示例 204
8.3  循环神经网络及其特殊架构 217
8.3.1  循环神经网络 217
8.3.2  长短期记忆网络 219
8.3.3  门控循环神经网络 221
8.4  注意力机制 222
8.5  Transformer模型 226
第9章  自然语言处理 229
9.1  自然语言处理概述 229
9.2  文本表示方法 230
9.2.1  独热编码 231
9.2.2  TF-IDF方法 231
9.2.3  Word2Vec模型 232
9.2.4  GloVe预训练模型 233
9.2.5  BERT预训练模型 234
9.3  大语言模型及示例 236
第10章  日志异常检测 244
10.1  数据预处理 245
10.1.1  常用数据集介绍 245
10.1.2  日志数据处理 246
10.2  HDFS日志异常检测 247
10.2.1  日志解析与模板匹配 248
10.2.2  事件序列构建 252
10.2.3  滑动窗口处理 257
10.2.4  特征工程与标签关联 259
10.2.5  模型训练与评估 262
10.3  日志异常检测经典模型及示例 264
10.3.1  DeepLog模型及示例 265
10.3.2  LogAnomaly模型及示例 274
10.3.3  LogRobust模型及示例 278
第11章  面向微服务的根因定位 281
11.1  引言 281
11.2  数据集 282
11.2.1  数据采集 282
11.2.2  公开数据集 284
11.3  根因定位方法 286
11.4  根因定位的关键技术 288
11.4.1  异常检测 288
11.4.2  PageRank算法及示例 289
11.4.3  随机游走算法 296
11.4.4  深度优先搜索 297
11.4.5  皮尔逊相关系数 298
11.4.6  根因定位关键技术总结 298
第12章  网络流量异常检测 300
12.1  引言 300
12.2  网络流量分类与数据集 301
12.2.1  网络异常流量分类 301
12.2.2  公开数据集 302
12.3  数据预处理 308
12.4  网络流量异常检测方法 313
12.5  网络流量异常检测示例 315
12.5.1  基于SVM的网络流量异常检测 315
12.5.2  基于DNN的网络流量异常检测 322

购买链接

下个月上市

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值