【FAS Survey】《Deep learning for face anti-spoofing: A Survey》

在这里插入图片描述

在这里插入图片描述

PAMI-2022

最新成果:https://github.com/ZitongYu/DeepFAS


1 Introduction & Background

人脸识别系统,automatic face recognition (AFR) system:

在这里插入图片描述

  • parallel fusion,并行
  • serial scheme,串联

人脸活检:

  • face presentation attack detection or face liveness detection

人脸活检方法分类:

  • 传统方法
  • 深度学习

(1)传统方法

Most traditional algorithms are designed based on human liveness cues and handcrafted features

liveness cues 包括但不限于:

  • eye-blinking
  • face and head movement(nodding and smiling)
  • gaze tracking
  • remote physiological signals(rPPG)
  • screen bezel(屏幕边框)
  • irregular/limited geometric depth distribution
  • abnormal reflection(the face surface of print/replay and transparent mask attacks are usually with irregular/limited geometric depth distribution and abnormal reflection, respectively.)
  • moire pattern(摩尔条纹)
  • illumination changes
  • physiological signals

classical handcrafted descriptors designed for extracting effective spoofing patterns from various color spaces(RGB, HSV, and YCbCr)

  • LBP
  • SIFT
  • SURF
  • HOG
  • DoG
  • image quality
  • optical flow motion

(2)深度学习的方法

是本文讨论的重点,作者总结如下
在这里插入图片描述

1.1 Face Spoofing Attacks

攻击类型,automatic face recognition (AFR) system 经常分为这两类

  • digital manipulation(in the digital virtual domain)
  • physical presentation attacks(PAs)

本文重点讨论 PAs——misleads the real-world AFR systems via presenting face upon physical mediums in front of the imaging sensors

PAs 不同切入角度有不同的分类形式
在这里插入图片描述
根据 attackers’ intention

  • impersonation:entails the use of spoof to be recognized as someone else via copying a genuine user’s facial attributes to special mediums such as photo, electronic screen, and 3D mask(拿着别人的假脸攻击)
  • obfuscation:hide or remove the attacker’s own identity using various methods such as glasses, makeup, wig, and disguised face.(在自己脸上作假来攻击)

根据 geometry property

  • 2D attacks——Flat/wrapped printed photos, eye/mouth-cut photos, and digital replay of videos are common 2D attack variants
  • 3D attacks——hard/rigid masks can be made from paper, resin, plaster, or plastic, flexible soft masks are usually composed of silicon or latex
    • low-fidelity 3D mask(低仿 3D)
    • high fidelity mask(高仿 3D)

根据 facial region covering

  • whole attacks
  • partial attacks

1.2 Datasets for Face Anti-Spoofing

Sensor:

  • multispectral SWIR(短波红外,1400 - 2500 nm)
  • NIR(750-1400 nm)
  • RGB
  • depth
  • Thermal
  • four-directional polarized
  • other specialized sensors (e.g., Light field camera)

数据集(prevailing public FAS datasets):data amount, subject numbers, modality / sensor, environmental setup, and attack types.

在这里插入图片描述

samples(图片数) and subjects(IDs)

公开数据发展的趋势:

  • large scale data amount
  • diverse data distribution
  • multiple modalities and specialized sensors

在这里插入图片描述

1.3 Evaluation Metrics

评价指标

  • Rejection Rate (FRR)
  • False Acceptance Rate (FAR)
  • Half Total Error Rate (HTER)
  • Equal Error Rate (EER)
  • Area Under the Curve (AUC)
  • Attack Presentation Classification Error Rate (APCER),
  • Bonafide Presentation Classification Error Rate (BPCE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值