PAMI-2022
最新成果:https://github.com/ZitongYu/DeepFAS
文章目录
1 Introduction & Background
人脸识别系统,automatic face recognition (AFR) system:
- parallel fusion,并行
- serial scheme,串联
人脸活检:
- face presentation attack detection or face liveness detection
人脸活检方法分类:
- 传统方法
- 深度学习
(1)传统方法
Most traditional algorithms are designed based on human liveness cues and handcrafted features
liveness cues 包括但不限于:
- eye-blinking
- face and head movement(nodding and smiling)
- gaze tracking
- remote physiological signals(rPPG)
- screen bezel(屏幕边框)
- irregular/limited geometric depth distribution
- abnormal reflection(the face surface of print/replay and transparent mask attacks are usually with irregular/limited geometric depth distribution and abnormal reflection, respectively.)
- moire pattern(摩尔条纹)
- illumination changes
- physiological signals
classical handcrafted descriptors designed for extracting effective spoofing patterns from various color spaces(RGB, HSV, and YCbCr)
- LBP
- SIFT
- SURF
- HOG
- DoG
- image quality
- optical flow motion
(2)深度学习的方法
是本文讨论的重点,作者总结如下
1.1 Face Spoofing Attacks
攻击类型,automatic face recognition (AFR) system 经常分为这两类
- digital manipulation(in the digital virtual domain)
- physical presentation attacks(PAs)
本文重点讨论 PAs——misleads the real-world AFR systems via presenting face upon physical mediums in front of the imaging sensors
PAs 不同切入角度有不同的分类形式
根据 attackers’ intention
- impersonation:entails the use of spoof to be recognized as someone else via copying a genuine user’s facial attributes to special mediums such as photo, electronic screen, and 3D mask(拿着别人的假脸攻击)
- obfuscation:hide or remove the attacker’s own identity using various methods such as glasses, makeup, wig, and disguised face.(在自己脸上作假来攻击)
根据 geometry property
- 2D attacks——Flat/wrapped printed photos, eye/mouth-cut photos, and digital replay of videos are common 2D attack variants
- 3D attacks——hard/rigid masks can be made from paper, resin, plaster, or plastic, flexible soft masks are usually composed of silicon or latex
- low-fidelity 3D mask(低仿 3D)
- high fidelity mask(高仿 3D)
根据 facial region covering
- whole attacks
- partial attacks
1.2 Datasets for Face Anti-Spoofing
Sensor:
- multispectral SWIR(短波红外,1400 - 2500 nm)
- NIR(750-1400 nm)
- RGB
- depth
- Thermal
- four-directional polarized
- other specialized sensors (e.g., Light field camera)
数据集(prevailing public FAS datasets):data amount, subject numbers, modality / sensor, environmental setup, and attack types.
samples(图片数) and subjects(IDs)
公开数据发展的趋势:
- large scale data amount
- diverse data distribution
- multiple modalities and specialized sensors
1.3 Evaluation Metrics
评价指标
- Rejection Rate (FRR)
- False Acceptance Rate (FAR)
- Half Total Error Rate (HTER)
- Equal Error Rate (EER)
- Area Under the Curve (AUC)
- Attack Presentation Classification Error Rate (APCER),
- Bonafide Presentation Classification Error Rate (BPCE