[1]吴微,李传阳,张源,等.基于高效通道注意力倒残差网络的掌静脉识别[J/OL].激光杂志,1-11[2025-04-14].http://kns.cnki.net/kcms/detail/50.1085.TN.20240926.1421.004.html.
文章目录
1、Background and Motivation
背景
- 掌静脉识别技术的发展
- 传统方法的局限性
- 卷积神经网络(CNN)的应用
动机
- 提高识别精度
- 降低参数量
- 融合先进技术
- 实际应用需求
2、Related Work
传统的基于人工提取的方法
- 基于纹理特征
- 基于结构特征
- 基于子空间
基于卷积神经网络的方法
- 普通的基于卷积神经网络的方法,
- 基于Transformer的方法。
3、Advantages / Contributions
本文通过融合倒残差结构、深度可分离卷积与注意力机制构建了高精度、低参数的高效通道注意力倒残差网络(efficient channel attention inverse residual network,ECIR-Net)。
有效提高了识别性能,在提高识别率的前提下降低了网络的参数量,具有部署在移动端以边缘计算形
式运行的可行性。
4、Method
提取 RoI 采用的是 Wu W, Wang Q, Yu S, et al. Outside box and contactless palm vein recognition based on a wavelet denoising ResNet[J]. IEEE Access, 2021, 9: 82471-82484.
整体网络结构
efficient channel attention network,ECA-Net
ECA-Net使用自适应方法动态地确定卷积核的大小。这个大小描述了跨通道相互作用的范围
倒残差:面对掌脉识别任务时,通道降维虽然减少了计算参数,但是可能会丢失本就稀少的掌脉特征。
5、Experiments
5.1、Datasets and Metrics
香港理工大学多光谱图库(PolyU)
同济大学图库(Tongji)
等误率(equal error rate,EER)
5.2、Compare with Others
5.3、Ablation Experiments
不加入ECA-Net的基线模型深度倒残差网络(Depth Inverse Residual Network,DIRNet)和加入ECA-Net的ECIR-Net进行了性能测
收敛的更快,精度更高
堆叠层数实验
13 vs 25 vs 37 vs 19
与其它层数相比,19层的网络性能最好,模型的收敛速度更快、性能更稳定
计算性能
ECIR⁃Net模型在复杂度均保持在较低水平的前提下,大大提高了识别精度与稳定性,适合部署于计算能力有限的移动设备。
6、Conclusion / Future work
- RoI 获取方法
- 倒残差
- ECA-Net
- depth-wise separable convolution
- 又小又好
- 下一阶段的研究将考虑进一步优化模型结构,减少模型参数与计算量,将其部署到移动设备。
更多论文解读,请参考 【Paper Reading】