【PVR】《Recognition of palm vein based on efficient channel attentional inverted residual》

在这里插入图片描述

[1]吴微,李传阳,张源,等.基于高效通道注意力倒残差网络的掌静脉识别[J/OL].激光杂志,1-11[2025-04-14].http://kns.cnki.net/kcms/detail/50.1085.TN.20240926.1421.004.html.



1、Background and Motivation

背景

  • 掌静脉识别技术的发展
  • 传统方法的局限性
  • 卷积神经网络(CNN)的应用

动机

  • 提高识别精度
  • 降低参数量
  • 融合先进技术
  • 实际应用需求

2、Related Work

传统的基于人工提取的方法

  • 基于纹理特征
  • 基于结构特征
  • 基于子空间

基于卷积神经网络的方法

  • 普通的基于卷积神经网络的方法,
  • 基于Transformer的方法。

3、Advantages / Contributions

本文通过融合倒残差结构、深度可分离卷积与注意力机制构建了高精度、低参数的高效通道注意力倒残差网络(efficient channel attention inverse residual network,ECIR-Net)。

有效提高了识别性能,在提高识别率的前提下降低了网络的参数量,具有部署在移动端以边缘计算形
式运行的可行性。

4、Method

提取 RoI 采用的是 Wu W, Wang Q, Yu S, et al. Outside box and contactless palm vein recognition based on a wavelet denoising ResNet[J]. IEEE Access, 2021, 9: 82471-82484.

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

整体网络结构

在这里插入图片描述

efficient channel attention network,ECA-Net

在这里插入图片描述

ECA-Net使用自适应方法动态地确定卷积核的大小。这个大小描述了跨通道相互作用的范围

在这里插入图片描述

在这里插入图片描述

倒残差:面对掌脉识别任务时,通道降维虽然减少了计算参数,但是可能会丢失本就稀少的掌脉特征。

在这里插入图片描述
在这里插入图片描述

5、Experiments

5.1、Datasets and Metrics

香港理工大学多光谱图库(PolyU)

同济大学图库(Tongji)

在这里插入图片描述
等误率(equal error rate,EER)

5.2、Compare with Others

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

5.3、Ablation Experiments

不加入ECA-Net的基线模型深度倒残差网络(Depth Inverse Residual Network,DIRNet)和加入ECA-Net的ECIR-Net进行了性能测

在这里插入图片描述
在这里插入图片描述

收敛的更快,精度更高


堆叠层数实验

13 vs 25 vs 37 vs 19

在这里插入图片描述
与其它层数相比,19层的网络性能最好,模型的收敛速度更快、性能更稳定


计算性能

在这里插入图片描述
ECIR⁃Net模型在复杂度均保持在较低水平的前提下,大大提高了识别精度与稳定性,适合部署于计算能力有限的移动设备。

6、Conclusion / Future work

  • RoI 获取方法
  • 倒残差
  • ECA-Net
  • depth-wise separable convolution
  • 又小又好
  • 下一阶段的研究将考虑进一步优化模型结构,减少模型参数与计算量,将其部署到移动设备。

更多论文解读,请参考 【Paper Reading】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值