处理不平衡数据集的机器学习方法

本文探讨了机器学习中不平衡数据集的问题及其对模型的影响,介绍了欠采样、过采样和集成方法三种处理策略,以及它们的具体实现示例。强调了在实际应用中选择合适方法的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在机器学习领域,经常会遇到不平衡数据集的问题。不平衡数据集指的是其中一个类别的样本数量远远超过了另一个类别的样本数量,这会导致模型在训练过程中对数量较多的类别更为敏感,而对数量较少的类别表现较差。为了解决这个问题,我们可以采用一些处理不平衡数据集的思路和方法。

一、欠采样

欠采样是指减少数量较多类别的样本数量,使其与数量较少类别的样本数量相近。这样可以使模型在训练过程中更均衡地学习两个类别的特征。下面是一个简单的欠采样实现示例:

import numpy as np
from collections import Counter

def undersample(X, y, ratio=1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值