- 博客(1054)
- 收藏
- 关注
原创 手把手教你用Dify+Java自建MCP服务,实现AI业务数据查询(问数)
简单来说,MCP就是一个AI调用服务的协议,它就像一个“连接器”,让AI模型能够方便地连接到各种数据源和工具。就像我们熟知的 USB-C 接口,它能让电脑轻松连接到如鼠标、键盘、音响或者硬盘等各种设备。MCP的作用类似,它为AI模型提供了一个标准化的连接方式,让模型能够方便地接入不同的数据源和工具,就像 USB-C 让设备之间能够无缝连接一样。
2025-06-06 15:26:33
533
原创 越是小公司,越要做智能体!为什么?看完这一篇你就知道了!!
AI是一个特别考验行动力的工具。你一定要先动起来。特别是对小公司来说,能为员工省下1小时都是赚的,再小的经济利益都是扎实落地的效益。如果你用COZE做智能体,我给你一个非常务实的建议:一定不要去管中间的那些复杂功能。比如在中间加一个工作流,再加两个插件,很可能加到最后你自己都不知道这些插件是干什么的。
2025-06-06 14:17:56
516
原创 大模型帮你读书-使用LLM构建实体关系图谱,看到就是赚到!!!
近年来,随着大模型技术的发展,大模型的语境理解能力和处理复杂关系现能力提升明显。使用大模型进行基于文本的实体关系抽取比传统的深度学习方法(LSTM+Attention)在精度方面有了很大的提升。基于此,我们可以将一整本书“喂给”大模型,让它来告诉我们书里面有哪些主要人物,以及他们之间的相互关系。本文就利用国产大模型文心4.5 + LangChain工具链,实现这个想法。
2025-06-05 15:01:20
691
原创 爆!三大热门大型模型服务方案实测:VLLM、LLaMA.cpp、SGLang 谁才是你的最强生产力引擎?
在这个大模型爆发的时代,从写代码、生成图像,到撰写报告、构建多模态系统,AI 正逐步成为技术人的第二大脑。然而,有一个关键问题常常被忽视:模型装好了,怎么高效地部署和服务?是的,单机推理还算简单,但当你需要支撑 Web API、大量并发请求、低延迟响应、多用户隔离、LoRA 热插拔……你就会发现,部署一个大型语言模型(LLM)或者视觉语言模型(VLM),不仅仅是“模型 + 显卡”这么简单。今天这篇文章,我们就来扒一扒当前大火的三种大模型服务方案:VLLM、LLaMA.cpp HTTP Server
2025-06-05 11:36:53
367
原创 【最强知识库】Qwen3大模型永久白嫖!手把手教你搭建本地知识库,打造你的专属最强大脑!
今天就来给大家介绍一个Cherry studio中非常实用的功能,那就是本地知识库的构建。废话不多说,开整!RAG原理简介先给大家简单科普一下RAG的原理。RAG(检索增强生成) 是一种生成式AI技术,通过结合外部知识库的信息和模型生成的内容,提升生成内容的质量和相关性。
2025-06-04 13:53:20
565
原创 开源AI新协议!AI Agent与前端交互的轻量级协议,轻松构建交互式AI应用!
AI Agent 的兴起让前端交互需求激增,但传统开发中,连接Agent后端与前端需大量定制代码,效率低下。在 MCP(模型上下文协议)、A2A(Agent-to-Agent 通信协议)之后,AI Agent 的生态正在走向一个更完整的方向:AG-UI 协议横空出世,专为 Agent 与前端应用的通信交互而设计。
2025-06-04 11:38:24
660
原创 【AI大模型】RAG与本地知识库,向量数据库,以及知识图谱的联系与区别
“RAG的本质是高效检索,而知识库,向量数据库和知识图谱只是组织数据的一种形式”这两天在之前的一篇关于RAG检索增强的文章中有一个评论,问RAG和知识图谱的区别;这时才发现,原来很多人对RAG技术还没有一个本质的认识,以及与其相关的本地知识库,向量数据库等。所以,今天就来介绍一下上面的这些概念,以及其联系与区别。
2025-06-03 18:41:50
749
原创 大模型也开始玩儿建模?“数学智慧”正在被 ModelingAgent 重新定义
大语言模型近年来在数学推理、逻辑问答、甚至复杂证明任务中屡创佳绩。然而,这种“解题”能力距离真正的“现实问题解决力”仍有显著鸿沟。一个具备实际智能的系统,不能只是完成符号运算,更需要具备将模糊语言转化为结构化建模任务的能力——这正是人类科学、工程、政策决策中最核心的认知过程之一。
2025-06-03 12:01:47
884
原创 Qwen3发布:到底升级了啥?普通开发者怎么用?深度体验指南来了!
简单来说,Qwen3是阿里云推出的第三代超大规模语言模型,属于“通义千问”系列。你可以把它理解成一个超级聪明的AI助手,不仅能写代码、回答问题、讲故事,还能帮你做翻译、逻辑推理、甚至生成创意内容。
2025-06-02 08:00:00
906
原创 【AI大模型】AI产品经理必懂:RAG、COT、Agent等关键术语全解析
大模型时代,我们会碰到非常多的新名词,如RAG、COT、A2A、MCP、Workflow、FunctionCall等,最近在思考如何体系化的记忆这些概念,在搭建Agent过程中,发现这些名词在建设Agent过程中都会用上,那不妨以Agent作为主线,整理下LLM相关的知识点
2025-06-01 08:00:00
827
原创 有手就会!在Cursor中配置你的第一个MCP服务——GitHub MCP!建议收藏!!
关于MCP,我的观点暂时没什么改变,这是一个长期被低估,短期被高估的方向,你暂时不需要对MCP这个概念有太多的焦虑,如果你觉得自己不太理解MCP,不知道MCP怎么用,那还是因为现在MCP生态不够成熟,相应的工具不够好用。以及,可能你没有相应的需要而已。现阶段的MCP并没法帮你做出更好的产品,只是为你提供效率提升的价值,如果你实际没有需要,而去疯狂尝试各种MCP服务,或者MCP生态下各种各样的工具,那就又有点舍本逐末,陷入工具爱好者的误区了。
2025-05-31 08:00:00
762
原创 AI老板心中的迈巴赫:DeepSeek+Ollama+Xinference+RAGFlow+Dify部署教程,RAG落地5件套!
DeepSeek-R1火了之后,Ai老板部署需求大大提升,抛开效果不谈,五件套易用性和灵活性相比VLLM大大提升,门槛较低,但是效果不言而喻。以下部署全部以docker方式进行,因为太方便了,但同时坑很多,请做好心理准备
2025-05-30 11:41:37
950
原创 清华首创多模态+知识图谱+RAG,问答精准度超 94%
多模态RAG面临的困难知识图谱(KGs)通过将实体及其关系以结构化形式编码,为多跳推理和精准召回上下文提供了可行性。但是在多模态资源中,实体之间的关系非常复杂,导致检索输出碎片化和持续的幻觉问题。并且知识图谱的构建和维护需要大量人工劳动,将其与向量搜索和 LLM 提示相结合会增加大量的工程开销。现有的知识图谱与 RAG 混合框架面临着可扩展性瓶颈,需要大量的手动调整以保持知识更新时的鲁棒性。
2025-05-30 10:35:43
846
原创 大模型 Agent 就是文字艺术吗?你怎么看?
最近在技术圈里有一个很有趣的争论:大模型 Agent 是不是就是各种 Prompt 的堆叠?像 Manus 这样看起来很智能的 Agent,本质上是不是就是用巧妙的 Prompt 约束大模型生成更好的输出?换句话说,这是不是一门文字艺术?
2025-05-29 14:35:14
612
原创 DeepSeek R2没来,DeepSeek R1+来了~
没等来DeepSeek-R2,却等来了DeepSeek-R1+刚刚,DeepSeek官方发布通知,DeepSeek R1模型完成一个小版本试升级,模型已开源
2025-05-29 11:43:36
786
原创 还不学大模型,连外包都卷不过了!JAVA的就业市场太难了!
第一批被优化的,不是初级程序员,而是“拒绝学习AI的中级工程——他们的产出效率已被AI+新人组合碾压。
2025-05-28 14:58:45
653
原创 从核心能力到落地场景:AI大模型在企业中的应用实践
我们发现大部分的场景落地,是企业的IT部门或者数字化部门在牵头去找业务场景,真正有业务部门深入参与的落地的案例还是相对有限。所以我觉得首先需要了解大模型的核心能力,特别是能够跟企业业务场景结合的能力,只有更熟悉它的能力边界后,才知道在哪些场景可以落地。
2025-05-28 11:29:39
936
原创 从零部署Qwen大模型:vLLM实战指南,零基础小白收藏这一篇就够了!!
在人工智能技术飞速发展的今天,大型语言模型(LLM)已成为技术创新的核心驱动力。本文将手把手教你使用高性能推理引擎vLLM部署Qwen大模型,并提供Python和Java两种语言的实现代码,帮助不同技术背景的开发者快速上手。
2025-05-27 19:15:51
641
原创 一文讲透大模型应用开发:新时代技术核心竞争力人人都能掌握!看到就是赚到,建议收藏!!
最近几年,大模型在技术领域的火热程度属于一骑绝尘遥遥领先,不论是各种技术论坛还是开源项目,大多都围绕着大模型展开。大模型的长期目标是实现 AGI,这可能还有挺长的路要走,但是眼下它已经深刻地影响了“编程”领域。各种 copilot 显著地提升了开发者的效率,但与此同时,开发者也变得非常地焦虑。因为开发者们实实在在感受到了它强大的能力,虽然目前只能辅助还有很多问题,但随着模型能力的增强,以后哪天会不会就失业了?与其担忧,我们不如主动拥抱这种技术变革。
2025-05-27 18:35:40
618
原创 【AI大模型】不同限制条件下使用知识图谱为LLM提供稳定及高效的推理能力
知识图谱(Knowledge Graphs, KGs)以其结构化的方式有效地表示和组织现实世界中的复杂关系,成为信息存储和查询的重要工具。与此同时,大语言模型(Large Language Models, LLMs)在自然语言处理任务中展现出卓越的理解和生成能力。由于LLMs在处理推理任务时,常常面临知识更新滞后和生成幻觉(hallucination)等问题,研究者们尝试将LLMs与KGs相结合,以增强模型的推理能力和准确性。然而,现实情况中往往会有诸多限制条件,例如不完整的KG可能会影响推理链的完整性,进
2025-05-26 14:59:59
796
原创 再见AI Agents,你好Agentic AI
AI Agents被定义为由大型语言模型(LLMs)和大型图像模型(LIMs)驱动的模块化系统,用于特定任务的自动化。Agentic AI的出现是为了解决AI Agents在处理复杂、多步骤或需要协作的场景中的局限性,它代表了一种范式转变,强调多智能体协作、动态任务分解、持久记忆和协调自主性。
2025-05-26 12:01:21
544
原创 爆火MCP的来时路:LLM开启超进化,从函数调用到通用上下文协议
传统大语言模型(LLM)的短板我们先来简单回忆下 LLM 的基本能力:LLM 是近年来自然语言处理领域的革命性成果,它们通常基于深度神经网络+Transformer 架构,通过海量语料训练形成的参数化知识表征系统,其核心能力体现在语义理解与序列生成两个层面。LLM 的核心目标就是理解和生成自然语言,例如ChatGPT是基于自回归的方式进行文本生成,在约定范式下能够实现符合人类对话范式的交互输出,但是传统的 LLM 有两个短板严重限制了模型的能力:
2025-05-25 08:00:00
588
原创 【AI大模型】PD分离架构下:KV Cache如何传递?看完这一篇你就知道了!!
KV cache 是 vLLM 的基础,KV 值的传递是 PD 分离实现的关键,目前 vLLM 中由 kv_transfer 模块(包括两个版本 V0/V1)完成。在 KV cache 传递过程中要考虑哪些问题,传输会不会成为系统的瓶颈?本文主要讨论 PD 分离下 KV cache 传递机制,对过程中可能遇到的问题、未来演进方向进行探讨。
2025-05-24 14:56:39
689
原创 无需训练!让VLM同时具备「视觉」与「推理」能力,数学题得分暴涨30%
「视觉」与「推理」为何难以兼得?当前的视觉语言模型(VLM)就像「视力超群但数学不及格的学生」——能看懂图片,却解不开复杂的数学题。
2025-05-24 11:56:05
785
原创 【AI大模型】一文搞懂 Agent、Function Calling、MCP、A2A,零基础小白建议收藏起来慢慢学!!
本文将从基础概念出发,逐步解析 Agent(智能体)、Function Calling(函数调用)、MCP(模型上下文协议)及 A2A(智能体协作协议),帮助读者理解 LLM 应用知识体系。Agent(智能体) 是一个能够 感知环境、自主决策、执行动作 的实体。在大模型场景中,Agent 通常基于大语言模型(LLM)作为核心推理引擎,结合外部工具、知识库和多模态能力,完成复杂任务。
2025-05-23 14:23:57
582
1
原创 刚刚!首个下一代大模型Claude4问世,连续编程7小时,智商震惊人类
复杂推理,编程能力都有飞跃,上来就会「勒索人类」。全世界都在等待 GPT-5、DeepSeek V4,但今天起,大模型竞争已经进入了全新阶段。北京时间周五凌晨,知名 AI 创业公司 Anthropic 正式推出 Claude 4 系列大模型。先期推出的型号包括 Claude Opus 4 和 Claude Sonnet 4,它们为代码生成、高级推理和 AI 智能体树立了全新标准。
2025-05-23 11:19:10
580
原创 产品经理可能需要的AI大模型知识,大白话版,建议收藏!!
从 ChatGPT 问世到 Deepseek 的出现,AI 给人类带来的惊艳已无需多言,AI 大模型的发展速度远超过我们想象。「如何打开脑洞让 AI 帮你做 PPT?」、「如何写 prompt 提示词让 AI 显得更专业?」,现在市面上并不缺乏教你如何更好使用 AI 大模型的内容。今天我想要和大家聊聊的是:除了这些众所周知的,产品经理还需要知道哪些 AI 大模型的知识?
2025-05-22 14:23:34
624
原创 别再复制粘贴了!让AI自动调用 Prompt 的神器终于来了,看到就是赚到!!
Prompt太多,但用不起来不知道你是不是像我一样。积累一大堆Prompt,但经常想不起来用。即使想起来,每次都要复制粘贴,非常繁琐。有人放在 AI 编程工具的规则(Rules)里,能解决一部分问题。但我想,是否可以把常用的Prompt也做成 MCP。每个 Prompt 都是这个 MCP 的一个工具(Tool)让 AI 根据用户要求,自动选 Prompt 生成。
2025-05-22 11:45:48
691
原创 直到我真正理解了“Token”和“分词器”,才是我学懂Transformer的第一次顿悟!
你有没有这种感觉?看了很多Transformer、LLM的文章,却总觉得云里雾里?今天我们来聊聊大型语言模型(LLM)中的一个核心概念——Token。直到我真正理解了“Token”和“分词器”,这才是我学懂Transformer的第一次顿悟,这可能是我整个大模型学习过程中唯一一次一口气看懂的内容。虽然它看起来“基础”,但却是所有大模型推理、训练和优化的底层起点。不管是deepseek还是claude,Token都是它们能读懂和生成文字的关键。无论你是刚入门的大模型爱好者,还是在实践中苦于 Token 限制的
2025-05-21 15:14:00
725
原创 DeepSeek-V3再发论文,梁文锋署名,低成本训练大模型的秘密揭开了
虽然此前 DeepSeek 已经发布了 V3 模型的技术报告,但刚刚,他们又悄然发布了另一篇围绕 DeepSeek-V3 的技术论文!这篇 14 页的论文瞄向了「Scaling 挑战以及对 AI 架构所用硬件的思考」。从中你不仅能读到 DeepSeek 在开发和训练 V3 过程中发现的问题和积累的心得,还能收获他们为未来的硬件设计给出的思考和建议。这一次,DeepSeek CEO 梁文锋同样也是署名作者之一。
2025-05-21 13:55:14
983
原创 Qwen3-0.6B能击败Bert吗?
最近在知乎上刷到一个很有意思的提问 Qwen3-0.6B 这种小模型有什么实际意义和用途。查看了所有回答,有人提到小尺寸模型在边缘设备场景中的优势(低延迟)。也有人提出小模型只是为了开放给其他研究者验证 scaling law(Qwen2.5 系列丰富的模型尺寸为开源社区验证方法有效性提供了基础)。还有人说 4B、7B 的 Few-Shot 效果就已经很好了甚至直接调用更大的 LLM 也能很好的解决问
2025-05-20 15:00:23
975
原创 即将迎来DeepSeek-R2震撼升级:算力狂飙300%,颠覆AI未来!
即将发布的 DeepSeek R2,则在技术架构、参数设置、推理效率、多模态处理及多语言支持等方面实现了全方位的提升,甚至在成本效率和硬件适配上做出了显著优化。这篇文章将围绕 DeepSeek R2 与前代产品 R1 之间的多方面改进进行深入对比与解析,结合数个权威来源的信息数据,全面展示新版本的技术突破和市场影响。
2025-05-20 11:26:36
805
原创 涨薪30%!转型AI产品经理,这3个方法所有人都适用!
在AI产品经理刚成为互联网公司香饽饽的时候,我同事刚做产品1年的月月就规划了自己的转型计划,然后用3个月时间成功更换赛道,转战AI产品经理,涨薪30%。问及她有什么上岸秘诀?她也复盘总结了3个踩坑经验和正确路径,今天分享出来,希望对你有帮助。
2025-05-19 22:27:53
759
原创 AI时代已经到来!AI大模型的就业市场真是疯了!!!
教育部最新增设“人工智能”本科专业,北京、上海等地AI工程师年薪破百万频上热搜,华为、腾讯等企业开出天价争夺大模型人才……这些信号无一不在宣告:AI不再是科幻概念,而是决定未来就业市场的“新石油”。当蒸汽机取代马车时,最好的选择不是成为更快的马夫,而是学习驾驶火车。AI大模型的爆发同样如此:它淘汰的不是人类,而是不会使用人类工具的人。那些在招聘网站上疯狂增长的“AI训练师”“大模型应用工程师”“智能业务架构师”岗位,正在清晰勾勒出未来十年的职业新版图。正如互联网革命催生了产品经理、数据分析师等新职业
2025-05-19 21:35:17
518
原创 大模型AI应用,正在企业级赛道迅猛爆发,应用场景广阔,市场空间巨大
大模型AI应用在消费级市场的爆发,已引发各界广泛关注。不论是ChatGPT带动的第一波浪潮,还是DeepSeek之后更多中国大模型AI应用的涌现,从AI智能助手到AI陪伴应用,再到AI在各个领域的产品,应用层在全面爆发。但实际上,还有另一个易于忽略却刚需明确、广受看好的赛道,爆发得更迅猛——企业级大模型AI应用市场。这一趋势已有诸多现实印证。如AI、云计算、企服领域龙头玩家纷纷推出AI应用开发平台,满足企业拥抱生成式AI需求;IDC预测,中国生成式AI软件市场规模将达到35.4亿美元。国家层
2025-05-19 21:10:57
545
原创 绝了!DeepSeek里能一键导出Word了,90%的人还不知道
DeepSeek里Excel能导出,那Word能直接导出吗?当然OK😎那咱们今天就主要以卤鹅哥的事件为例,来给大家实操。为此,我精心整理了一套DeepSeek里一键导出Word的方案,让你 轻松上手! 以后再也不要为Word导出烦恼了😭。今天继续上干货,教大家,如何用 DeepSeek一键实现Word导出自由!今天这篇帖子实用性极强,大家一定要好好收藏哦!
2025-05-18 08:00:00
1041
原创 DeepSeek+Dify 构建本地知识库,真香!建议收藏起来慢慢学!!
之前讲过 DeepSeek + Cherry 搭建本地知识库,这样的知识库比较初级,上传的文件限制较多。无法满足更多个性化需求。今天我们来看看 DeepSeek + Dify 如何搭建自己的知识库。Dify 作为同样开源的 AI 应用开发平台,提供完整的私有化部署方案。通过将本地部署的 DeepSeek 服务无缝集成到 Dify 平台,企业可以在确保数据隐私的前提下,在本地服务器环境内构建功能强大的 AI 应用。
2025-05-17 08:00:00
662
原创 DeepSeek大模型“出圈”企业端!十大场景解锁千行百业AI新范式
当AI技术从实验室走向产业一线,一场关于效率与创新的革命正在悄然发生。从钢铁厂的“智慧大脑”到医院的“AI医生”,从金融风控到能源调度,DeepSeek大模型正以“技术底座”的角色,重塑企业运营的底层逻辑。让我们聚焦DeepSeek在企业端的十大核心应用场景,看它如何为千行百业注入智能基因!
2025-05-16 14:10:58
887
原创 Java和Python转行AI大模型的优势有哪些?怎么快速学习AI大模型?附AI大模型学习路线+全套学习资料!!
Java和Python转行AI大模型的优势有哪些?怎么快速学习AI大模型?附AI大模型学习路线+全套学习资料!!
2025-05-16 11:23:44
764
原创 零基础搭建个人知识库!DeepSeek、通义千问保姆级详细教程!小白友好型~
近期,各类AI工具的爆火,引起不少小伙伴们的兴趣。很多人想用AI帮助自己处理、分析生活中的一些文件、数据等等。但如果用网页版、APP版,每次上传文件会很麻烦!所以建立一个个人知识库,会方便很多。建立个人知识库用于AI训练,其实很简单!网上也有很多说法,说这样那样的,众说纷纭!但,我保证,看完今天这篇推文,你自己也可以轻松建立知识库!
2025-05-15 14:31:56
678
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人