- 博客(1236)
- 收藏
- 关注
原创 【保姆级教程】LangExtract大模型神器:精准提取文本信息,零代码实现结构化数据,小白必备收藏
LangExtract是谷歌开源的Python库,利用大语言模型从非结构化文本中精准提取结构化信息。它支持精确定位信息源头,结构稳定,能智能处理长文档。只需少量示例即可定制任务,无需微调,可快速适配医疗、法务、金融等多行业应用。通过可视化界面和交互式HTML,极大提升数据提取的准确性和可追溯性,有效降低RAG系统中的幻觉问题。
2025-09-10 11:56:09
536
原创 一文讲清从LangChain到LangGraph,AI智能体提示词工程的系统化学习,看到就是赚到,建议收藏!!
AI 的世界正在飞速演变,从简单的问答系统升级成了复杂、多步骤推理的智能代理。不管你是想打造客服机器人、数据分析工具,还是复杂的自动化工作流程,掌握 LangChain 和 LangGraph 的提示工程(Prompt Engineering)是你成功的关键!
2025-09-10 11:23:56
399
原创 阿里Qwen3-ASR-Flash深度解析:支持Prompt增强的语音识别大模型,性能超越GPT-4o
阿里发布语音识别大模型Qwen3-ASR-Flash,错误率低于GPT-4o和Gemini,支持11种语言及多种方言。最大特点是支持Prompt增强,通过文本输入提高专有名词识别准确率。模型仅通过API提供,按音频时长收费,基于未开源的Qwen3-Omni构建,展现了阿里在语音识别领域的技术实力。
2025-09-10 10:37:41
513
原创 LangGraph实战教程,手把手教你构建多智能体架构,全程干货,简单易懂,建议收藏!!
大模型多智能体系统(Large Model Multi-Agent System) 是由多个基于大语言模型(LLM)的智能体(Agent)组成的协作系统。每个智能体具备独立的任务处理能力,通过协同工作解决单一智能体难以完成的复杂问题。
2025-09-09 13:57:21
588
原创 【AI大模型】RAG技术详解,解决大模型“三大先天缺陷“的企业级AI基石,建议收藏!!
RAG技术通过外接动态知识库,解决大模型知识滞后、幻觉问题和行业知识缺乏三大缺陷。通过离线索引(文档分块、向量化)和在线检索(查询向量化、相似性搜索)两个阶段,用检索到的事实约束生成结果。高级RAG通过查询优化、检索优化和后处理进一步提升效果。RAG为企业提供合规、低成本、灵活的AI解决方案,已成为企业级AI的基石。
2025-09-09 11:33:34
792
原创 一文详解Graph RAG vs 传统RAG,构建更丰富上下文的智能检索革命,零基础小白收藏这一篇就够了!!
Graph RAG相比传统RAG具有明显优势。传统RAG的Top-K检索仅选择最相关片段,导致信息不完整,丢失上下文和联系。Graph RAG构建实体关联图,通过图遍历获取完整上下文,使LLM能更好理解结构化信息,生成更全面、更有意义的答案。这种结构化呈现方式降低漏掉关键细节的可能性,输出完整且有深度的响应。
2025-09-09 10:36:38
677
原创 大模型的“举一反三“术:深入浅出解析大模型泛化能力的底层逻辑,零基础小白收藏这一篇就够了!!
大模型的泛化能力使其从死记硬背进化到融会贯通,能处理新场景和新任务。这种能力源于统计学习、模式捕捉和表示学习等底层逻辑,通过高质量数据、Transformer架构和精巧训练方法实现。未来大模型将向更高效、可靠的方向发展,成为更值得信赖的智能助手。
2025-09-08 08:30:00
1585
原创 构建AI智能体——RAG技术详解:解决LLM幻觉问题的实战指南,零基础小白收藏这一篇就够了!!
本文详细介绍了RAG(检索增强生成)技术如何解决大语言模型的"幻觉"问题。RAG通过结合外部知识库与LLM,让模型先检索相关资料再生成答案,类似开卷考试。文章解释了RAG的工作原理、核心组件(检索器和生成器)、完整工作流程(离线处理和在线处理),并提供使用阿里千问模型和FAISS实现的代码示例。RAG在智能客服、企业知识库管理等领域有广泛应用,是提高AI回答准确性和可靠性的关键技术。
2025-09-08 08:00:00
584
原创 【AI大模型】Claude上下文管理太强了!三种交互模式高效利用长窗口,一文讲清,小白必看收藏!
在使用大语言模型(LLM)进行问答、推理或多轮对话任务时,我们常常遇到“上下文窗口”这个概念。它决定了模型一次性可以“处理”和“记住”的 token 总量,是理解模型能力边界和优化提示工程的基础。本文将通过三张图,分别剖析claude 三类典型上下文场景:标准对话模式、扩展思考模式、扩展思考 + 工具调用模式,帮助读者全面理解上下文窗口的结构、演变和使用策略。
2025-09-07 08:30:00
860
原创 2025年,如果你还在优化 prompt 工程,那你已经落后了!!
2025年,如果你还在优化 prompt 工程,那你已经落后了一大截。当一部分人还在做 prompt hacking,另一批阅观者已经用上 Agentic AI 应用框架,Agentic AI 已经切实到出产!Agent市场体重破 23 亿美金,预测到2028年达到280亿。这不是偏间技术,而是你职业生涯的切边大潮。
2025-09-07 08:00:00
950
原创 Karpathy重磅发声:告别「提示词工程」,拥抱「上下文工程」!大模型应用的系统性升级,AI开发者必看收藏
太少或格式不对,LLM 就缺乏必要的上下文,性能无法达到最优。太多或不相关,不仅成本上升,性能反而可能下降。说它是艺术,则是因为需要对 LLM 心理学有直觉般的理解——Karpathy 戏称为「人类精神」(people spirits)的引导直觉。
2025-09-06 08:30:00
1899
原创 大模型入门必看:生成式AI、推理模型、Agent与具身智能一文讲清,小白&程序员收藏!
当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。
2025-09-06 08:00:00
898
原创 【AI大模型】prompt-optimizer:小白也能玩转的提示词优化神器,一键提升大模型输出质量
prompt-optimizer是一款强大的AI提示词优化工具,支持Web、桌面、Chrome插件和Docker四种部署方式。它能一键优化提示词,支持多轮迭代改进,并实时对比优化前后效果。工具支持OpenAI、Gemini、DeepSeek等多种主流AI模型,可配置高级参数,采用纯客户端架构保障数据安全。通过功能提示词引导,帮助用户快速生成高质量提示词,提升AI输出质量与稳定性,适用于角色扮演、知识提取、创意写作等多种场景。
2025-09-05 11:52:17
711
原创 一文讲清知识图谱:突破传统RAG局限,打造智能体超强上下文,看到就是赚到!!
传统RAG方案在精准性、推理性和可解释性上存在不足。知识图谱通过建模实体及其关系,为智能体提供精准、可解释、覆盖全面的上下文。文章通过案例分析展示了知识图谱如何解决向量检索的局限,介绍"爆炸半径向量搜索"技术,以及知识图谱在上下文工程中的优势,包括明确作者与情境、提供可解释路径和动态结构更新等,使智能体处理更接近人类认知模式。
2025-09-05 10:48:52
624
原创 从零开始学RAG:手把手教你搭建专属知识库,解决大模型三大痛点!
文章介绍RAG技术如何解决大模型知识过时、幻觉和隐私问题,详解其原理、技术选型,并通过本地知识库和医疗辅助诊断系统两个实战案例展示搭建方法,最后提供优化技巧,强调RAG是赋能而非取代大模型,使其在专业场景中更实用。
2025-09-05 10:23:40
837
原创 一文彻底讲透大模型幻觉、从原理到实战解决方案,零基础小白收藏这一篇就够了!!
文章详细解析了大语言模型中的"幻觉"现象,包括前后矛盾、事实错误等四种类型。这些幻觉源于训练数据质量问题、AI生成机制缺陷和模糊的用户指令。为应对这一问题,文章提出了五项有效策略:使用精准提示词、采用示例学习、调整温度和TopK参数、引入RAG技术,以及设计幻觉检测方案。通过这些方法,用户可以在享受AI强大能力的同时,有效控制并减少幻觉的发生,确保输出内容的准确性和可靠性。
2025-09-04 18:41:06
574
原创 从 EchoLeak 到 AgentFlayer,RAG系统安全防护手册:从间接Prompt注入到数据外传通道详解
本文深入分析了RAG系统面临的安全威胁,特别是间接Prompt注入(IPI)攻击和数据外传通道。通过EchoLeak和AgentFlayer两个最新漏洞案例,揭示了攻击者如何通过隐藏指令和自动外传机制窃取企业敏感数据。文章强调传统安全假设的不足,并提出多层防御策略:输入净化、权限最小化、上下文隔离和输出拦截,为企业和开发者提供了一套完整的RAG安全防护框架。
2025-09-04 13:49:47
624
原创 【构建AI智能体】RAG切片策略完全指南:5种方法助你构建高效大模型知识库,建议收藏!
RAG切片是将长文档合理切割成小块的过程,是RAG系统的基石。文章详细介绍了五种切片策略:改进的固定长度切片、语义切片、LLM语义切片、层次切片和滑动窗口切片,分析了各自的优缺点和适用场景。选择合适的切片策略需考虑文档类型、精度需求和计算成本,通过实验评估效果最佳。切片质量直接影响AI检索和回答的准确性,是构建高效知识库的关键步骤。
2025-09-04 11:02:53
716
原创 【AI大模型】智能主体分块技术,让AI检索更精准的完整实现指南,建议收藏!!
智能主体分块(Agentic Chunking)是一种创新的文档分割技术,通过识别逻辑断点、生成摘要标题并保持内容重叠,解决了传统分块导致的上下文丢失问题。文章详细介绍了其工作原理、核心优势及Python实现方案,展示了如何利用LLM、Hugging Face和Pinecone工具提升AI检索效率,适用于RAG、企业文档搜索等多种应用场景。
2025-09-03 14:47:23
661
原创 基于问答对vs RAG:一文看懂智能问答系统的选择之道,建议收藏!
文章对比了两种智能问答技术:基于问答对的问答(预设答案库高效匹配)和基于文档的检索增强生成(RAG,结合检索与生成)。前者简单轻量但灵活性有限,后者能处理复杂文档并动态更新知识库。FAQ场景适合前者,复杂文档和动态知识库适合后者,混合方案可兼顾效率与灵活性,是构建智能问答系统的优选。
2025-09-03 11:35:52
903
原创 为什么说AI智能体是普通人必须抓住的下一个风口?看完这一篇你就知道了!!
什么是 AI 智能体?它就是你的 “数字分身”,能代替你写文案、做咨询、处理客服,甚至帮你分析市场数据,更关键的是:现在知道这个概念的人不足 1%。当别人还在焦虑 “AI 会抢饭碗”,聪明人早已开始训练属于自己的 “数字员工”。就像 2014 年做淘宝店的人,只要坚持下来大多年入百万,今天布局 AI 智能体,就是在复刻当年的成功路径,你不用懂代码、不用花钱买流量,只需花 10 分钟看完这篇保姆级攻略。
2025-09-02 11:55:38
470
原创 【AI大模型】手把手教你构建企业级AI智能体系统,让多个AI Agent一起高效协作!建议收藏!!
文章详细介绍了LangGraph框架中的Handoffs(交接)和Supervisor(主管)模式,这是构建多智能体系统的两大核心技术。通过Command原语实现智能体间的灵活交接,以及中央主管智能体协调多智能体工作的Supervisor模式。文章还提供了状态管理、性能优化等高级特性,并展示了构建智能客服系统的实战案例,帮助开发者掌握构建生产级多智能体系统的关键技术。
2025-09-02 10:46:54
1034
原创 【强烈推荐】从入门到精通:LangChain与LangGraph选型指南,大模型开发必看收藏!
本文深入对比了LangChain和LangGraph两大大模型开发框架。LangChain提供丰富组件库和LCEL编排能力,适合简单一次性任务;LangGraph专注于构建有状态Agent系统,采用图结构支持复杂状态管理和多智能体协作。文章从技术架构、应用场景等维度分析,提供决策矩阵,帮助开发者根据项目需求选择合适的框架,或组合使用发挥各自优势。
2025-09-01 11:56:06
708
原创 Memory-R1框架:让LLM拥有智能记忆能力,告别RAG噪音干扰,建议收藏!!
Memory-R1框架通过两个强化学习微调代理解决LLM记忆局限性。内存管理器智能决定何时添加、更新或删除信息;答案代理从候选记忆中筛选最相关内容,生成高质量回答。两者均以问答正确性为奖励信号,无需手动标注。这种方法避免了传统RAG系统带来的噪音干扰,使LLM能更有效地利用外部记忆,提升长期对话和复杂推理能力。
2025-09-01 11:04:51
529
原创 程序员福利!京东开源JoyAgent-JDGenie多智能体平台,手把手教你部署,建议收藏!!
本文介绍京东开源的企业级多智能体平台JoyAgent-JDGenie,这是一个端到端的完整产品而非仅是SDK。文章详细解析其核心优势(全栈开源、轻量化高兼容性、实战检验),提供Docker一键启动和手动启动两种部署方式,并讲解如何添加外部MCP工具和新增自定义子Agent进行二次开发,旨在降低AI Agent开发门槛,让开发者专注于业务创新。
2025-08-30 21:43:36
955
原创 【必学收藏】智能问数大模型实战:让业务人员像聊天一样获取数据的5个关键点
文章探讨了智能问数(通过自然语言直接获取业务指标的数据查询功能)如何实现"能用、有用、好用"的目标。作者提出需关注五大关键维度:数据准确(建立统一指标库和SQL校验机制)、贴近场景(聚焦高频痛点)、工程化落地(构建闭环架构确保稳定性)、体验友好(多轮澄清和个性化呈现)以及质量与安全可控(指标治理和权限控制)。每个维度都有具体衡量指标和常见坑点,强调智能问数需要多维度协同发力才能创造实际业务价值。
2025-08-30 21:06:12
990
原创 AI大模型赋能合同审查:Agent架构设计与实战案例详解,看到就是赚到,建议收藏!!
本文详细介绍了基于大模型的合同审查Agent系统架构与设计,通过"两库两规"(风险条款库、标准模板库、行业法规、公司政策)构建专业合同审查能力。系统包含主Agent、五个子Agent及最终审核报告Agent,实现合同初审、关键要素审核、风险评估和合规检查等功能。文章通过农产品采购案例展示了Agent如何识别合同风险点并提出专业修改建议,为小企业提供高效、专业的合同审查解决方案,弥补通用AI工具的局限性。
2025-08-29 11:42:44
1151
原创 搞懂 RAG 三步走:想清楚、讲明白、做到位,一文打通技术闭环,零基础小白收藏这一篇就够了!!
检索组件:向量数据库、嵌入模型、相似度算法生成组件:大语言模型、提示工程、上下文整合数据处理组件:文档加载器、文本分割器、元数据管理集成层组件:重排序器、融合机制、查询优化器
2025-08-29 11:10:31
657
原创 Agent 的关键一跃是什么?没有它,AI 应用根本跑不起来(99%人忽略了)
从代码助手到研究专家,Agent 应用快速崛起。本文将深入解析为什么它们需要全新的基础设施支撑,以及如何通过 LangGraph Platform 实现可靠、可扩展的 Agent 系统落地
2025-08-28 11:45:57
585
原创 【AI大模型大厂面试题】快star大模型二面:为什么要用LoRA?
LoRA是一种参数高效微调技术,通过低秩矩阵分解减少训练参数量,显著降低大模型微调时的显存需求。它冻结原始模型参数,仅训练低秩适配矩阵,在保持模型性能的同时大幅提高微调效率,适用于资源受限场景下的模型定制。
2025-08-28 11:10:00
643
原创 【AI大模型面试真题】Transformer 为何使用多头注意力机制,而不是一个头?
Transformer可以说是大模型的基石,面试大模型相关工作,必问Transformer!所以,大家一定要在理解Transformer上多下功夫。今天的话题是:Transformer 为何使用多头注意力机制,而不是一个头?如果把Transformer的注意力机制想象成“一群人一起看一幅画”,那么
2025-08-27 11:47:06
931
原创 【AI大模型实战】手把手教你用 FastAPI + LangGraph搭建 AI 工作流,全程干货,简单易懂!!
Large Language Models (LLMs) 擅长推理,但现实世界的应用往往需要有状态、多步骤的工作流。这就是 LangGraph 的用武之地——它让你可以通过由 LLM 驱动的节点图来构建智能工作流。
2025-08-27 11:14:32
981
原创 【AI大模型实战】 手把手教你使用Dify+高德地图MCP实现天气查询,全程干货,看完少走99%的弯路!!
出行前,你是否还在为天气预报和路线规划而烦恼?是否担心目的地突降暴雨或交通拥堵?Dify+高德地图MCP利用先进的天气预报技术,提供精准的实时天气预报和未来几天内的天气趋势。不再需要在各种App之间切换,你只需在Dify+高德地图MCP中,一键查询目的地天气,即可轻松掌握降雨、温度、风力等关键信息。
2025-08-26 13:49:24
334
原创 【AI大模型实战】Dify零代码搭建合同AI,10分钟实现智能审查,彻底告别低效人工,建议收藏!!
还在为合同评审头疼吗?一份几十页的合同,律师要看半天,普通人更是云里雾里。今天教你用Dify搭建一个智能合同评审工作流,10分钟搞定,AI帮你自动识别风险点,再也不用担心踩坑了!为什么需要智能合同评审?传统合同评审就像大海捞针:
2025-08-26 11:39:59
1082
原创 Ollama界面升级,开启全民本地人工智能新时代!
过去几天,AI 界迎来了两大突破性进展:Ollama 推出了全新的易用界面,让运行本地 AI 模型变得像打开聊天软件一样简单;OpenAI 则发布了开源 “思考型” 模型 GPT-OSS—— 这款功能强大、适应性强的模型完全免费,任何人都能在自己的设备上运行。没错,OpenAI 终于走向了 “开放”。当这两者结合时,简直相当于给带自动驾驶的特斯拉装上了 F1 引擎:既有原始算力,又能体验丝滑操作。
2025-08-26 10:46:47
591
原创 【AI大模型】提升RAG检索准确率:数据前处理全流程策略与关键技巧详解,建议收藏!!
要构建高性能的 RAG(Retrieval-Augmented Generation,检索增强生成)系统,理想的输入文件是能够直接提取纯文本或结构化文本的类型,比如 txt、md、csv、json。这些格式清爽干净,既便于后续清洗和分段,也能完整保留文档的结构和附带信息,从源头减少损耗。
2025-08-25 13:56:51
473
原创 【AI大模型】手把手教你使用dify+neo4j+llm大模型问答(非遗样本),全程干货,建议收藏!!
意图解析需要把用户输入的问答解析成可以识别的关系和实体,是通过prompt告诉大模型该如何进行解析。下面是简单的处理,应该把实体和意图分开写,或者从知识库查询,下面是这次demo的prompt
2025-08-25 11:25:44
732
原创 【小白教程】从 0 到 1 搭建 agent,全程干货,小白也能看懂的框架指南
近一年agent不断火热,或是大模型借助工具自助决策完成任务,或是通过静态编排的工作流自动顺序执行结果,让我们在处理相关任务时效率得到指数级提高。尽管可以在很多智能体商店找到一些场景下的agent项目,但为了能够个性化满足自己的需求,最好还是可以自己了解、尝试搭建一些基础agent。
2025-08-25 10:45:02
585
原创 【AI大模型】一文详解四大LLM模型,预训练和后训练新范式,零基础小白收藏这一篇就够了!!
大型语言模型(LLM)的发展已经取得了长足的进步,从早期的GPT模型到我们今天拥有的复杂的开放权重LLM。最初,LLM的训练过程仅集中于预训练,但后来扩展到包括预训练和后训练。后训练通常包括监督指令微调和对齐,这些是由ChatGPT普及的。自ChatGPT首次发布以来,训练方法已经发生了变化。在本文中,我回顾了最近几个月在预训练和后训练方法论方面的最新进展。
2025-08-24 08:00:00
632
原创 【AI大模型部署】手把手教你使用ollama本地部署AI知识库,更好的保护隐私数据,建议收藏!!
如果你需要经常处理文档,可以在本地部署一个私有化的知识库,让AI帮你分析文档而不会造成隐私泄露。使用这个多模态的私有化知识库,可实现对话,图片,文档一站式AI分析,让你轻松应对各种文章总结。
2025-08-23 08:00:00
725
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人