【AI大模型】一文详解RAG-MCP 新架构设计解决大模型提示词膨胀的工具选择问题,看到就是赚到!!

前言

由于提示词的膨胀以及工具选择变得复杂,大语言模型(LLMs)很难高效地使用越来越多的外部工具,特别是那些由模型上下文协议(MCP)定义的工具。为此,需要新的架构来解决, RAG-MCP 框架正是解决这个提示词膨胀的问题。

图片

RAG-MCP 是一种“检索增强生成”的方法。它通过提前筛选出最相关的工具来解决这个问题。具体来说,在调用大语言模型之前,RAG-MCP 会先用语义检索技术,从外部的索引中找出和当前查询最相关的 MCP 工具。只有这些被选中的工具描述才会被传递给大语言模型。这样一来,提示词的长度大幅减少,决策过程也变得更加简单。

下文详细剖析之。

—1*—*

RAG-MCP 架构设计剖析

1、提示词膨胀(Prompt Bloat)问题剖析

**提示词膨胀(Prompt Bloat)**是一个严重的问题:如果在大模型的上下文中为每一个可能的工具都提供定义或使用说明,会占用大量的空间,并且可能会让大模型感到“压力山大”。

我们在 AI 应用落地中发现,随着工具数量的增加,很难在单个提示词中描述大量的 API 或工具。而且,许多 API 的功能非常相似,只有细微的差别。如果一次性把太多工具都塞进去,不仅会超出大模型的上下文长度限制,还可能让大模型感到困惑,分不清这些功能相似的工具。

这直接导致了第二个问题:决策成本太高。面对一长串功能相似的工具,大模型在选择是否调用以及调用哪个工具时,会面临更复杂的决策。工具越多,出错的可能性就越高。比如:大模型可能会选择了一个不太合适的工具,或者误解了某个工具的功能。实际上,即使是像 Qwen-3 这样的先进模型,在面对众多 API 选项时,也可能会“脑洞大开”,虚构出一个实际不存在的 API;而 Anthropic 的 Claude 可能会为用户请求选择错误的库。这些失败案例说明,简单地增加工具数量,可能会让大语言模型(LLM)的性能下降。

2、RAG-MCP 解决方案剖析

为了解决这些问题,提出了 RAG-MCP 新架构设计方案,这是一个将检索增强生成(RAG)与模型上下文协议框架结合起来的方法。它的核心思想是:不要一次性把所有工具都展示给大语言模型,而是根据用户的查询,动态地找出最相关的工具子集。

图片

在 RAG-MCP 架构设计中,大量的工具描述(比如:MCP 函数模式、使用示例等)都存储在一个外部的语义索引中。当一个新的查询到来时,一个专门的检索器(比如:向量空间语义搜索)会先选出最有可能对这个查询有用的前k个候选工具。然后,只有这k个工具的描述会被注入到大语言模型(LLM)的提示词中(或者通过函数调用 AP I提供),这样就能大大减少上下文的长度和复杂性。这个检索步骤就像是一个“聚焦过滤器”,减少了提示词的冗余,帮助大模型更容易地做出选择。

这种方法有点像检索增强问答系统的工作方式:不是把整个维基百科都给的模型,而是只检索相关的文章。在这里,我们检索的不是静态的知识,而是实时的、可以操作的工具知识。还有一个额外的好处是可扩展性:因为工具信息存储在外部索引中,新工具或更新的 API 可以通过更新索引来整合,而不需要重新训练 LLM,这样就能确保系统始终保持最新状态。简单来说,检索的作用就是在正确的时间提供正确的工具,从而减轻模型的决策负担。

3、RAG-MCP 新架构设计

3.1、RAG-MCP框架

为了解决提示词膨胀问题,RAG-MC P将检索增强生成(RAG)原则应用于工具选择。我们不再将所有 MCP 描述一股脑地塞给大语言模型,而是维护一个包含所有可用 MCP 元数据的外部向量索引。在处理用户查询时,整个过程分为三个关键步骤

步骤一、检索

一个轻量级的基于大语言模型的检索器会对用户的任务描述进行编码,并在 MCP 索引上执行语义搜索,返回与任务最相似的前k个候选 MCP。

步骤二、验证

对于每个检索到的 MCP,RAG-MCP 可以生成一个少样本示例查询,并测试其响应,以确保基本兼容性。这一步在调用之前起到了“合理性检查”的作用。

步骤三、调用

只有单个最佳的 MCP 描述(包括其工具使用参数)会被注入到大语言模型的提示中或通过函数调用 API 传递给大模型。然后,大模型在不考虑工具发现的情况下进行规划和执行。

这种设计带来了以下好处:

  • 缩小提示词规模:通过仅提供相关的 MCP 元数据,即使完整的工具注册表很大,RAG-MCP 也能避免上下文窗口过载。
  • 降低认知负担:大语言模型不再需要从数百个干扰项中筛选,从而提高了选择准确率并减少了幻觉现象。
  • 资源高效:与传统的 MCP 客户端(比如:Claude 或早期的 GPT-4 集成)不同,它们在交互之前必须实例化所有已注册的 MCP 服务器,而 RAG-MCP 仅激活所选的 MCP,降低了启动成本,并能够在没有基础设施瓶颈的情况下支持任意大的工具集。
  • 多轮稳健性:在跨越多个轮次的对话中,大语言模型无需重新纳入所有 MCP;基于检索增强生成的 RAG-MCP 检索器可动态处理工具调用,为特定任务推理腾出上下文空间。

3.2、新架构设计三步流程示意图

RAG-MCP 的操作可以概括为以下三个核心步骤,架构图如下图所示:

图片

第一、任务输入 → 检索器

用户的自然语言任务被编码并提交给检索器。

第二、检索器 → MCP 选择与验证

检索器搜索 MCP模式 的向量索引,根据语义相似度对候选对象进行排序,并可选择通过合成示例对每个候选对象进行测试。

第三、使用选定的 MCP 执行大语言模型

大语言模型仅接收选定的 MCP 模式和参数,并通过函数调用接口执行任务。

通过将工具发现与生成解耦,RAG-MCP 确保大语言模型能够扩展到数百或数千个 MCP,而不会出现提示膨胀或决策疲劳。这类似于 RAG 系统通过仅检索相关段落来避免用整个语料库使大语言模型不堪重负。

4、RAG-MCP 新架构测试验证

4.1、实验设置

我们在 MCPBench 的网络搜索子集上进行了评估,将其作为测试平台。每个基线方法进行20次独立试验,若产生超过10个正确答案,则认为该方法成功。每次试验中,大模型最多与 MCP 服务器进行10轮交互以得出最终响应。我们使用 Deepseek-v3 作为评估器,确保实验在可控网络环境下进行,避免因连接问题导致请求失败。所有试验由 qwen-max-0125 驱动。

4.2、基线方法

实验评估了以下三种选择策略:

  1. 空白条件(Blank):一次性向大语言模型提供所有 MCP 描述,让其选择正确的一个。
  2. 实际匹配(Actual Match):通过关键词匹配预过滤候选池,然后提示词大模型。
  3. RAG-MCP:使用向量索引检索器对所有 MCP 进行语义排序,仅将排名最高的候选者注入大模型提示词。

4.3、评估指标

我们使用以下三个关键指标评估性能:

  • 准确率(%):大模型选择正确 MCP 的试验百分比。
  • 平均提示词元数:提示词所消耗的词元平均数量。
  • 平均完成词元数:大模型生成的最终输出词元平均数量。

最终答案的正确性由基于 Llama 的验证器自动判断。

4.4、结果

下表总结了基线方法的性能,结果显示 RAG-MCP 的有效性:

图片

  • 准确率:RAG-MCP 达到43.13%,显著高于实际匹配(18.20%)和空白条件(13.62%)。
  • 平均提示词元数:RAG-MCP为 1084,远低于空白条件(2133.84)。
  • 平均完成词元数:RAG-MCP 为 78.14,略高于实际匹配(23.60),但与更高的准确率和任务成功率相关。

RAG-MCP 新架构设计的出色表现源于以下几点

  • 聚焦上下文:仅注入最相关的 MCP 模式,避免了无关工具描述的干扰,使决策更清晰。
  • 提示词效率:大幅减少提示令牌,让大模型有更多空间用于任务推理,而非处理无关元数据。
  • 平衡生成:虽然完成令牌略有增加,但这反映了更全面的推理和验证,与更高的准确性相匹配。

总体而言,这些发现表明,检索增强的 MCP 选择有效控制了提示词膨胀,提升了大语言模型(LLM)的工具选择可靠性,使 RAG-MCP 成为可扩展外部工具集成的理想方案。

最后

为什么要学AI大模型

当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!

DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。

在这里插入图片描述

与此同时AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。
在这里插入图片描述
最近很多程序员朋友都已经学习或者准备学习 AI 大模型,后台也经常会有小伙伴咨询学习路线和学习资料,我特别拜托北京清华大学学士和美国加州理工学院博士学位的鲁为民老师给大家这里给大家准备了一份涵盖了AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料,这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

AI大模型系统学习路线

在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。

img

但知道是一回事,做又是另一回事,初学者最常遇到的问题主要是理论知识缺乏、资源和工具的限制、模型理解和调试的复杂性,在这基础上,找到高质量的学习资源,不浪费时间、不走弯路,又是重中之重。

AI大模型入门到实战的视频教程+项目包

看视频学习是一种高效、直观、灵活且富有吸引力的学习方式,可以更直观地展示过程,能有效提升学习兴趣和理解力,是现在获取知识的重要途径

在这里插入图片描述
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

海量AI大模型必读的经典书籍(PDF)

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
在这里插入图片描述

600+AI大模型报告(实时更新)

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

AI大模型面试真题+答案解析

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
在这里插入图片描述

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值