自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1143)
  • 收藏
  • 关注

原创 从小白到专家:Agent 任务分解的完整技术栈,看到就是赚到!!

本文将详细介绍如何在金融、证券领域构建智能Agent系统,实现复杂问题的自动化任务分解、依赖管理和并行执行。通过大模型、意图识别、工具使用的协同配合,为用户提供高效、准确的金融数据分析和决策支持。

2025-07-28 14:23:24 633

原创 【AI大模型】非Transformer架构落地之王,带着离线智能和原生记忆能力逐渐浮出水面

这一阶段,模型会判断哪些旧知识可以被遗忘,然后再从当前任务中提取出有价值的信息,写入记忆模块。这个过程不靠外挂、不靠缓存,而是由一个专门的神经网络来模拟记忆行为来实现动态擦除与增量写入,以此实现在保留重要历史信息的同时,灵活整合新知识。其次是记忆检索阶段。

2025-07-28 11:44:02 420

原创 【小白教程】一文详解GraphRAG的工作流程,零基础小白收藏这一篇就够了!!

Graph RAG 的工作原理是集成知识图谱到通过图遍历进行检索,最后将检索到的上下文输入到 LLM 进行生成,最终结果响应给用户。经典RAG的局限性\1. LLM更擅长处理结构化数据进行推理。 传统的 RAG 检索的是非结构化的信息块,并没有明确地捕捉实体之间的关系。即使检索到了正确的信息,该模型也可能难以将看似相关的事实联系起来。\2. 跨文本块的处理能力有限。 整个检索取决于块和查询之间的余弦相似度,并且如果只有检索两个块时才能产生答案,则在极端情况下,由于余弦相似度低,重要信息可能会被遗

2025-07-26 14:51:51 739

原创 大模型时代的挑战:人类语言本能与知识图谱的错位,看到就是赚到!!

为什么我们在知识图谱方面如此挣扎?这篇文章从人类自然语言与形式语言的巨大差异切入,剖析了知识表示中精确与灵活的矛盾、逻辑与故事性的张力,并深度探讨了知识图谱发展阻力的根源。文章适合关注AI知识表示、知识图谱和大模型应用的专业人员阅读。

2025-07-26 13:52:47 479

原创 GraphRAG的索引动态更新解法-分桶+局部更新及“上下文工程”新概念?看完你就懂了!!

我们继续看GraphRAG的问题,基于图的检索增强生成(Graph-RAG)在处理动态增长语料库时的效率问题。现在的一些方案,主要集中在静态语料库的检索增强生成,如Vanilla RAG、Graph-based RAG等。动态检索方法如DRAGIN、LightRAG和DyPRAG等虽然尝试解决动态语料库的问题,但在高频数据变化下的动态更新消耗仍然较高。这个问题的难点在于如何在不需要全图重建的情况下,高效地更新语料库,并保持高检索准确性和低延迟。

2025-07-25 19:18:28 716

原创 【AI大模型】一文讲清17种RAG架构实现原理与选型,零基础小白收藏这一篇就够了!!

RAG(Retrieval-Augmented Generation)是一种结合外部知识检索与语言模型生成的混合技术架构。它在大型语言模型(如 GPT)生成能力的基础上,通过外部知识库提高了准确性、时效性和可控性,广泛用于企业问答、搜索增强、智能客服、代码辅助、知识图谱等场景。然而,RAG不是一个固定结构,也没有固定的套路,而是一套可以灵活演化的系统。本文将结合当前主流实践,分析三类策略,17种RAG 实现方法的技术原理,帮助你选择最适合业务场景的方案。

2025-07-25 10:51:12 563

原创 GraphRAG变种这么多,该采用哪种?九大GraphRAG评估参考,看到就是赚到!!

本文,再来看一个评估工作,同样是一个GraphRAG-bench,也再次通过评估得出GraphRAG适合多跳推理场景,并且系统的评估了九大GraphRAG(RAPTOR、LightRAG、GraphRAG、G-Retriever、HippoRAG、GFM-RAG、DALK、KGP和ToG)在这个benchmark上的性能,供参考。

2025-07-24 15:23:35 752

原创 【AI大模型】告别思维链!0.027B超小型层级架构推理模型HRM!建议收藏!!

可以想象,虽然我们看到像GPT-4这样的模型能写诗、能对话,表现惊人,但当它们面对需要严密逻辑、多步推演的复杂问题时(比如解一个复杂的数独或规划一条迷宫的最优路径),它们常常会“想不明白”。论文作者认为,这并非偶然,而是源于它们核心架构——Transformer的“计算深度”是固定的、相对较浅的。无论模型做得多大,它处理信息的过程本质上还是“一步到位”的,缺乏反复推敲、深度思考的能力。

2025-07-24 11:51:11 530

原创 RAG系统的“聪明药”:如何用反馈回路让你的AI越用越聪明?看完这篇你就知道了!!

今天我们来聊聊RAG(Retrieval-Augmented Generation,检索增强生成)系统的进化之路——如何让它像喝了聪明药一样,越用越聪明,越聊越懂你。你是不是也有这样的体验?用ChatGPT、文档问答机器人,刚开始觉得还行,但用久了发现它总是“死脑筋”,问同样的问题,答得千篇一律,甚至一错再错。你想:“要是它能记住我的吐槽和建议,下次别再犯同样的错就好了!”——恭喜你,这正是RAG反馈回路(Feedback Loop)的核心诉求。

2025-07-23 14:15:14 677

原创 【AI大模型】RAG彻底爆了!一文读懂其架构演进及核心要点,零基础小白收藏这一篇就够了!!

检索增强生成(英语:Retrieval-augmented generation, RAG ) 是赋予生成式人工智能模型信息检索能力的技术。检索增强生成优化大型语言模型(LLM) 的交互方式,让模型根据指定的一组文件回应用户的查询,并使用这些信息增强模型从自身庞大的静态训练数据中提取的信息。检索增强生成技术促使大型语言模型能够使用特定领域或更新后的信息。应用案例,包括让聊天机器人访问公司内部资料,或来自权威来源的事实信息。

2025-07-23 11:51:35 660

原创 AI大模型RAG 信息检索:如何让模型找到‘对的知识’?看完这一篇就知道了!!

RAG飞速发展,成为连接“生成能力”与“外部知识”的桥梁,在RAG系统中,生成效果的好坏,往往不取决于模型本身有多“聪明”,而是它是否能“查对资料”。通俗地说,RAG 的本质是一种“开卷考试”:模型并不靠死记硬背,而是通过查找外部知识库来作答。如果查的资料靠谱、精确、上下文合理,回答自然逻辑清晰、信息详实;反之,如果检索不到关键内容,生成再强的模型也只能“睁眼说瞎话”。

2025-07-22 14:35:02 685

原创 九大GraphRAG方法深度对比:选择最适合你的图检索增强生成方案,看到就是赚到!!

在目前AI市场上,RAG 技术已经成为大语言模型应用的重要组成部分,而GraphRAG作为RAG的进化版本,通过引入图结构来处理复杂的知识关系,正在受到越来越多的关注。但面对市面上众多的GraphRAG变种,我们该如何选择最适合自己应用场景的方案呢?最近,一项名为GraphRAG-Bench的评估研究为我们提供了答案。它系统性地评估了总共九种主流GraphRAG方法,包括RAPTOR、LightRAG、GraphRAG、G-Retriever、HippoRAG、GFM-RAG、DALK、KGP和ToG,

2025-07-22 11:57:07 678

原创 【小白教程】详解RAG五种分块策略,技术原理、优劣对比与场景选型之道,收藏这一篇就够了!!

RAG通过结合检索与生成技术,依赖其高效检索算法、多模态融合能力及系统级优化,解决了基础大模型在企业内部应用的局限性,例如通过RAG技术对接企业内部知识库,支持知识动态更新与实时交互,显著降低了大模型的幻觉风险,无需微调训练模型,低成本适配企业垂直领域的应用场景,在数据安全与可控性方面,可加入权限控制逻辑,确保敏感信息仅在授权范围内使用,同时通过引用标注实现可追溯性。

2025-07-21 14:47:12 602

原创 【AI大模型】一文掌握21种RAG分块策略(含进阶技巧),零基础小白收藏这一篇就够了!!

检索增强生成(Retrieval-Augmented Generation,简称 RAG)是很多 AI 工程师“又爱又恨”的一项技术。理论上,它听起来很简单:“从自定义数据中检索出上下文,让 LLM 基于这些内容生成答案。”

2025-07-21 11:51:33 529

原创 【小白教程】Ollama本地部署任意大模型(适合企业/个人),看到就是赚到!!

5分钟,教你搭建专属AI助手!不管是个人还是企业,都能轻松部署DeepSeek、Gemma3、Qwen3等主流大模型。本地运行更安全,还能用手机随时访问,提升 10倍生产效率!

2025-07-20 08:00:00 863

原创 【AI大模型大厂面试真题】小米二面问我PagedAttention,5分钟凉了...

将所有可用于 kv cache 的内存按块进行预先分配,每一块的大小为 block_size * num_kv_heads * head_size,即一个 block 存放 block_size 个 token。

2025-07-19 08:00:00 891

原创 LangChain + MCP + vLLM + Qwen3-32B 构建本地私有化智能体应用

在 MCP Server 端,依据上面图片的规划,包括三个 MCP Tool ,分别是 获取所有可用的表名:get_all_tables、根据表名获取:Schema get_table_schema、执行SQL:run_sql ,交互协议选择 SSE 模式。首先实现数据库操作,这里仅仅做了数据库的交互,实际使用你应考虑很多性能细节的优化:

2025-07-18 14:53:19 621

原创 告别提示词工程,「上下文工程」才是 AI Agent 的核心竞争力,看到就是赚到!!

上下文工程(Context Engineering)是一个在人工智能领域逐渐走红的新术语。行业内讨论的焦点正从“提示词工程”(prompt engineering)转向一个更广泛、更强大的概念:上下文工程(Context Engineering)。托比·卢克(Tobi Lutke)[1]将其描述为“为任务提供完整的上下文背景,使大语言模型能够合理解决问题的一门艺术”,他说得很到位。随着 Agents 的兴起,将哪些信息输入“有限的工作记忆(limited working memory)”中变得越来越重要

2025-07-18 14:06:58 913

原创 【AI大模型实战】3步教你在智能体接入企业微信,全程干货,建议收藏!!

企业微信最近的动作比较多,比如上线了智能机器人业务,目前支持免费对接DeepSeek大模型。并且还可以对接知识库,训练机器人按照知识库的材料进行回答。对于公司来说,更多的是使用企业微信。这块的实际应用有非常丰富的场景。其实在上线这个智能机器人以前,企业微信就可以对接智能体平台。最近我在公司负责各种工作流的部署,发现了企业微信比较多的玩法。特别是对接智能体,总共有三种方案。

2025-07-17 15:02:22 568

原创 一文读懂 LightRAG:轻量级RAG,专为中小企业打造的“知识型AI小脑袋”

在大模型飞速发展的当下,RAG(Retrieval-Augmented Generation)已经成为许多AI系统的标配“外挂大脑”。它让模型不再“死记硬背”,而是能“查资料再答题”,极大地提升了生成准确性和时效性。但!传统的RAG架构动辄要几百GB的知识库、成堆的GPU资源、复杂的链路设计,对很多中小企业、个人开发者来说:“不是不能用,是用不起。”

2025-07-17 13:58:09 638

原创 【AI大模型实战】手把手教你构建N8N第一条工作流:自动获取资讯信息并保存到本地,全程干货,建议收藏!!

今天带大家搭建第一套自动化工作流:定时获取资讯并自动保存到本地文件夹中。既然有了想法,首先需要考虑的是,如何搭建这个工作流。本次将以两个方向去搭建如何去获取以及如何导入本地

2025-07-16 19:20:30 858

原创 「Tokens是胡扯」,Mamba作者抛出颠覆性观点,揭露Transformer深层缺陷

「Tokenization(分词)是 Transformer 模型为弥补自身缺陷不得不戴上的枷锁。」近日,Mamba 作者、CMU 助理教授、Cartesia AI 首席科学家 Albert Gu 撰写了一篇新博客,探讨了状态空间模型(SSM)和 Transformer 之间的权衡,并提出了这样一种观点。

2025-07-16 15:01:49 713

原创 效率起飞!新版Deepseek太强了,一键生成多种复杂图表,建议收藏!!

一键生成复杂着色地图上来就弄最难的先,着色地图,相信是很多小伙伴头疼的点,我们来试试能不能通过DeepSeek生成

2025-07-15 14:39:07 815

原创 【喂饭教程】一文详解Qwen3-RL训练过程详解,零基础小白收藏这一篇就够了!!

Qwen2.5的RL训练过程主要分为两阶段,第一阶段为离线阶段做DPO,第二阶段为在线阶段使用偏好RM做GRPO,两阶段RL主要是针对通用场景来做的。不同于Qwen2.5,过去一段时间基于RL推理的大火为后训练带来了新的方向,Qwen3也着重在后训练阶段提升模型的推理能力,并且一个关键创新为将思考模式和非思考模型集成到一个统一的框架中,这使得模型既拥有拥有复杂多步骤推理的能力(例如QwQ-32B),也能够基于上下文进行快速响应(例如GPT-4o)。

2025-07-15 14:15:31 416

原创 AI Agent 的数据架构:数据库、语料库、知识库与 LLM 的关系和协作

AI Agent 是一个能够感知环境、做出决策并采取行动以实现特定目标的智能系统。在大语言模型时代,AI Agent 通过整合 LLM 的语言理解能力、外部工具调用能力和环境交互能力,成为能够自主完成复杂任务的智能代理。

2025-07-14 19:26:42 941

原创 【AI大模型实战】企业级LLM+MCP+RAG+Agent融合架构正在重构AI基建标准!

在AI开发的浪潮中,我们经常面临这样的困境:RAG系统能够基于外部知识回答问题,但缺乏执行复杂任务的能力;而Agent系统虽然能调用各种工具,但往往缺乏深度的知识理解。如何将二者优势结合,打造一个既能"博览群书"又能"动手实践"的智能系统?经过几个月的技术探索和实践,我们基于MCP(Model Context Protocol)协议,成功构建了一套"工具+知识"双引擎架构。本文将详细分享这套系统的设计思路和核心实现,所有代码均已在生产环境验证,开箱即用。

2025-07-14 19:09:42 890

原创 【AI大模型】拆解、对比与优化:LLM工具智能体的五种任务规划与执行模式,零基础小白收藏这一篇就够了!!

大语言模型(LLM)驱动的 AI 智能体,特别是在借助Tools(工具)来完成复杂任务执行的过程中展现出了巨大的潜力。然而,让智能体能够合理规划任务步骤与执行、避免盲目行动是确保其高效可靠完成目标的关键。本篇将探讨多种 AI 智能体的任务规划与执行模式。包括:

2025-07-13 08:00:00 736

原创 一文看懂“提示词” vs “提示词工程” vs “上下文工程”,零基础小白收藏这一篇就够了!!

很多人分不清楚什么是“提示词”(Prompt),什么是“提示词工程”(Prompt Engineering),现在还又多了一个概念叫“上下文工程”(Context Engineering),这又和“提示词工程”什么区别?

2025-07-12 11:48:11 705

原创 彻底爆了!一文吃透AIGC、Agent、MCP的概念和关系,收藏这一篇就够了!!

近年来,人工智能领域涌现出许多新概念和新技术,其中AIGC、MCP和Agent成为了业界和学术界的热门话题。本文将深入浅出地介绍这三个概念,帮助读者全面理解它们的内涵、区别与联系,以及在实际应用中的价值。

2025-07-12 11:11:41 655

原创 AI不只大模型?AI Agent到底有多强?一文讲清,零基础小白收藏这一篇就够了!!

那AI Agent和LLM(Large Language Model,大型语言模型)是什么关系呢?可以这么简单理解,大模型是AI Agent实现的前提和基础。我们可以把AI Agent与LLM形象地比作生物体与其大脑,AI Agent有手有脚,可以自己干活自己执行,而LLM呢,就是它的大脑。举个栗子,你的厨房有个AI大厨 —— AI Agent。如果只用AI大模型,它可能只能给你输出一份食谱,告诉你需要哪些食材和步骤来制作一道菜。而使用AI Agent,它不仅能提供食谱,还会根据你的口味偏好

2025-07-11 19:57:31 713

原创 一文搞懂知识库的“切片”:如何处理 Word、PDF、Excel、HTML 等格式?收藏这一篇就够了!

几乎每一场面试都会被问:“你的项目里切片怎么做的?都支持哪些文件格式?”我一开始总答得稀里糊涂。后来才意识到,面试官真正想问的是:你懂不懂召回机制、是否了解不同文件格式的切片方式。

2025-07-11 19:32:50 741

原创 【AI大模型】针对中小企业在RAG检索增强中文档处理的解决方案,建议收藏!!

“ RAG技术成本最低的方式就是把非结构化文档转换成markdown格式进行处理 。”在大模型应用领域中——RAG技术应该属于一项基础技术,不论做什么业务基本都离不开RAG的存在;但RAG技术属于典型的入门五分钟,想做好却需要花费大量时间和精力,以及成本。所以,今天我们就来讨论一下RAG技术在企业应用中的解决方案,既要考虑技术问题,也要考虑成本问题。

2025-07-09 15:53:40 589

原创 【AI大模型教程】n8n爆火,工作流完胜Agent?看完这篇你就懂了

现在有两种主流的低代码/无代码平台,一类是以 n8n 为代表的通用工作流自动化平台,另一类则是以 Coze、Dify、Flowise、Langflow等为代表,专注于AI大模型应用构建的低代码Agent工厂。n8n的火爆,证明了从稳定性、可维护性和综合成本考量,n8n的架构和设计哲更为成熟和可靠

2025-07-09 11:54:21 975

原创 上下文工程:LangGraph四大高效调度策略,Agent告别“记忆过载”!

本文将从 Anthropic、OpenAI、LangChain 等前沿研究中提炼出**写入、选择、压缩、隔离**四大核心策略,并展示如何用 LangGraph 实战落地。掌握这门新兴“上下文工程学”,你将真正解锁智能体的潜力。

2025-07-08 12:02:39 566

原创 ⼤模型是万能的吗?探索机器学习+⼤模型在某出海投资业务的应⽤

本文基于一个公共云大客户的实际项目案例,探讨了如何通过AI大模型结合机器学习算法,构建一套智能化的投资预算预测与分配系统。

2025-07-08 11:27:14 705

原创 港大提出LightRAG:用“图”重塑RAG,检索成本降低99%,性能还更强!

当今大语言模型(LLM)的RAG应用回答问题时,有时候会出现“前言不搭后语”、“抓不住重点”等问题。微软的GraphRAG用“图”指明了方向,似乎能让LLM真正“理解”知识间的关联,却又被其高昂的API调用和高额的更新成本瞬间劝退?感觉陷入了“效果好=成本高”的死循环?来自香港大学和北邮的研究 LightRAG,优雅地解决了这个难题。它告诉你:鱼和熊掌可以兼得!LightRAG 不仅拥有图方法的深度理解力,还做到了极致的“简单”与“快速”。它用一种创新的双层检索机制,让检索成本暴降99%,并且能像搭积木一样

2025-07-07 15:30:39 449

原创 模型、代码、数据全开源!轻松训练自己的垂类Agent!零基础小白收藏这一篇就够了!!

传统做Agent,思路往往是先用高质量数据(比如GPT-4生成的轨迹)做一轮SFT,让模型先“学会说话”,然后再用RL去“优化行为”。但DeepSWE团队发现,这条路可能走窄了。他们直接在一个高质量的交互环境 R2E-Gym 中,让模型从零开始“试错”,只用最简单的0/1稀疏奖励(通过测试给1分,否则0分)来驱动学习。

2025-07-07 11:12:56 901

原创 python打造Google(A2A)+MCP,Langchain生态互补

Google的Agent2Agent (A2A) 协议是一种开放标准,旨在实现 AI 代理之间的无缝通信和协作。在一个代理使用不同框架和不同供应商构建的世界中,A2A 提供了一种通用语言,打破了孤岛并促进了互作性。

2025-07-06 08:00:00 766

原创 落地见真章!大模型如何赋能企业?看完这一篇你就懂了!!

我国高度重视AI大模型发展,已出台多项政策支持技术创新和应用落地,AI大模型技术取得突破性进展,模型规模和性能不断提升,AI大模型应用场景不断拓展,涵盖办公自动化、客户服务、市场营销、研发设计等多个领域,为企业降本增效、提升竞争力提供助力。

2025-07-05 08:00:00 603

原创 爆改RAG检索体验:向量+关键词,双剑合璧的“融合检索”实战指南

你以为RAG(Retrieval-Augmented Generation)检索只能靠向量?那你可就out了!今天,咱们就来聊聊如何用“向量+关键词”双剑合璧,打造检索界的“六边形战士”——融合检索(Fusion Retrieval)。

2025-07-04 11:58:48 727

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除