Luogu P1087 FBI树

本文介绍了一种特殊的二叉树——FBI树,并提供了一个具体的编程实现案例。通过递归构造方法,从一个特定的‘01’字符串出发,构建出FBI树并输出其后序遍历序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Luogu P1087 FBI树

题目描述

我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全“1”串称为I串,既含“0”又含“1”的串则称为F串。

FBI树是一种二叉树,它的结点类型也包括F结点,B结点和I结点三种。由一个长度为2^N的“01”串S可以构造出一棵FBI树T,递归的构造方法如下:

1) T的根结点为R,其类型与串S的类型相同;

2) 若串S的长度大于1,将串S从中间分开,分为等长的左右子串S1和S2;由左子串S1构造R的左子树T1,由右子串S2构造R的右子树T2。

现在给定一个长度为2^N的“01”串,请用上述构造方法构造出一棵FBI树,并输出它的后序遍历序列。

输入输出格式

输入格式

第一行是一个整数N(0 <= N <= 10),第二行是一个长度为2^N的“01”串。

输出格式:

包括一行,这一行只包含一个字符串,即FBI树的后序遍历序列。

输入输出样例

输入样例#1:

3
10001011

输出样例#1:

IBFBBBFIBFIIIFF

说明

对于40%的数据,N <= 2;

对于全部的数据,N <= 10。

noip2004普及组第3题


思路

首先想到这道题应该用神搜(深搜)和二分(模拟题干),在一层搜索中分别遍历左子树和子树, 等到左端点和右端点为同一值时(当前子串长度为一时), 判断输出并返回, 寻找下一子串。

关键代码如下

void bfs(int l, int r) {
    if(l == r) {
        pr(l, r);//输出函数
        return;
    }    
    int mid = (l + r) / 2;
    bfs(mid, x);
    bfs(mid + 1, r);    
    pr(l, r);//输出函数
    return;
}
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
using namespace std;
int a[2000];
int n;
inline int check(int l, int r) {
    if(l == r) {
        return a[l];
    }
    for(int i = l + 1; i <= r; ++i) {
        if(a[i] != a[i - 1]) {
            return 2;
        }
    }
    return a[l];    
}
inline void pr(int l, int r) {
    int x = check(l, r);
    if(x == 1) {
        printf("I");
        return;
    }
    if(x == 0) {
        printf("B");
        return;
    }
    if(x == 2) {
        printf("F");
        return;
    }
}
inline void bfs(int l, int r) {
    if(l == r) {
        pr(l, r);
        return;
    }
    int x = (l + r) / 2;
    bfs(l, x);
    bfs(x + 1, r);
    pr(l, r);
    return;
}
int main() {   
    scanf("%d", &n);   
    n = pow(2, n);    
    for(register int i = 1; i <= n; ++i) scanf("%1d", &a[i]);  
    bfs(1, n);    
    return 0;
} 
内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值