一句话理解bert与milvus实战

本文介绍了一个基于BERT-as-service和Milvus的新闻搜索系统。该系统利用BERT将新闻标题转换为特征向量,并通过Milvus进行高效存储及相似度检索。用户输入新闻标题后,系统能快速返回最相关的新闻内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,本文项目使用开源的 bert-as-service ,使用 BERT 做为句子编码器,将新闻标题数据转化为固定长度为 728 维的特征向量,并导入 Milvus 库。
然后,对存入 Milvus 库中的特征向量进行存储并建立索引,同时 Milvus 会给这些特征向量分配一个 ID,将 ID 和对应的新闻标题和文本存储在 PostgreSQL 中。
最后,用户输入一个新闻标题,BERT 将其转成特征向量。Milvus 对特征向量进行相似度检索,得到相似的新闻标题的 ID ,在 PostgreSQL 中找出 ID 对应的新闻标题和文本返回。在后续界面展示中可以看到新闻文本搜索的一个例子。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值