什么是数据采集与监视控制系统(SCADA)?

本文介绍了SCADA数据采集系统在工业生产中的关键作用,包括实时监控、自动化控制、故障诊断与维护、生产调度以及多地联网。同时推荐了低代码Web组态软件BY组态,简化数据可视化和管理过程,提升生产效率和可持续发展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SCADA数据采集是一种用于监控和控制工业过程的系统。它可以实时从现场设备获得数据并将其传输到中央计算机,以便进行监控和控制。SCADA数据采集系统通常使用传感器、仪表和控制器收集各种类型的数据,例如温度、压力、流量等,然后将这些数据汇总到一个统一的平台进行监控和分析。SCADA系统可以提供报警功能,当有异常情况时,它能够及时发出声音或闪光信号,使操作人员能够对问题进行快速响应和处理。此外,SCADA系统还可以提供历史数据记录、趋势分析等功能,帮助运营方了解设备的稳定性和生产效率,并为未来的优化和改进提供依据。

生产过程中的系统涉及到大量的生产设备和工艺控制参数,在这些繁杂的设备和参数之间构成的复杂结构中,科学高效的监控和控制对于降低故障率、提高生产质量至关重要。而SCADA(Supervisory Control And Data Acquisition)数据采集系统正是一种能够实现智能监测控制、优化调整并确保系统安全运行的解决方案。是搭建数据可视化中台的关键数据采集是集成ERP、MES等应用系统,搭建BI数据可视化看板的关键技术,连接起业务管理和实时生产,为企业的数字化功能模块提供坚实基础。

具体而言,使用SCADA 数据采集可以带来以下几个好处:

提高生产效率与产量:SCADA 数据采集系统可以实时获取工厂内部各式各样的生产数据,并根据数据进行快速有效的操作指令控制和反馈调整,同时自动化的控制过程可极大地加速算法判断执行的速度和准确度。

优化生产过程与减少故障率:SCADA 数据采集系统可以分析历史数据来提供令人信服的可视化图表和可靠的趋势分析结果,以便对可能的生产问题做出诊断和预估,并像人技术专家那样进行自发调整,从而实现精细化管理、减少故障率和下降维修成本的效果。

提高生产安全性:SCADA 数据采集系统能够自主监测并感知异常行为,并在必要时通过报警策略实现即时响应,避免发生可能造成严重意外事故的错误操作和不规范处理。

综上所述,使用SCADA 数据采集可以帮助企业实现对生产过程的实时监测、优化调整与自主控制,进而提供生产效率与_quality in production_ 的显著提升,同时达到降低故障率、减少维修成本、促进生产可持续发展等多个方面的效益。

SCADA(Supervisory Control And Data Acquisition)数据采集对于工业生产具有重要的意义,它可以帮助生产企业实现以下目标:

实时监控:SCADA 数据采集系统可以实时地获取现场设备和环境数据,并将其传输到中央处理器进行处理,从而使操作人员能够随时了解生产过程中的状态和变化。

自动化控制:SCADA 数据采集系统可以分析处理现场数据并自动执行相应的指令,从而使生产过程更加精确和高效。

故障诊断与维护SCADA 数据采集系统可以记录历史数据并进行趋势分析,从而提供故障诊断、预防性维护和设备保养等服务,大大降低设备故障率和维护成本。

生产调度:SCADA 数据采集系统可以根据生产需求和产品规格,制定科学合理的生产计划,并通过自动化控制实现准确的生产调度,提高生产效率和质量。

多地联网:SCADA 数据采集系统可以将多个生产点和生产线进行连接,完成从远程地区的数据采集到全局生产监测的一系列操作,实现自动化的集中管理。

SCADA 数据采集流程如下:

首先在机台设备上安装及配置多台数据采集通信网关。然后数据采集通信网关通过以太网或串口等通讯方式将各个生产线的硬件设备(如PLC,板卡,仪表等)采集数据。其次数据采集通信网关通过网口将数据经企业VPN专网传送到远端运营中心的通信服务器。再然后通信服务器将数据实时发送到数据库服务器,进行归档存储。最后应用服务器将汇集的中心数据进行二次加工及计算,回写数据存储区并保存。

综上所述,SCADA 数据采集对于提高工业生产效率、优化产品质量、减少设备故障率和维护成本、提升生产调度精度和实现远程集中管理等方面具有非常重要的意义。


 下面给大家介绍一款低代码、配置式web组态软件-BY组态

演示地址:by组态[web组态插件]

源码交付

        插件以源码方式提供,方便对插件本身进行个性化的二次开发。一次购买,终生升级。·操作简单易上手 支持灵活的自由式布局、组件化的设计使设计更加方便、丰富的组件库涵盖各行业模型组件,用户也可以自定义组件,以及对组件进行属性、数据、动画,事件等设置。用户只需通过简单的拖拉拽及配置几分钟上手就可以快速地制作出一张敏捷数据可视化平台。

动画驱动、模拟仿真

        逼真的动态模型仿真、模拟实际场景运行动画和实时数据监控,让管理人员能通过web系统更真实更轻松的掌握企业业务运行情况,高效运营。

交互事件设置

        直接对场景中的组件定义事件,方便快捷。通过编辑器快速定义鼠标事件实现业务交互效果,支持单

 成功案例

04-01
<think>好的,我现在需要帮助用户了解SCADA系统的架构、监控功能以及数据采集监控系统的相关内容。首先,我需要回忆一下SCADA系统的基本知识,并结合用户提供的三个引用内容来组织回答。 首先,用户提到的引用[1]提到SCADA系统的核心架构是以分布式实时数据库为核心,搭建工业控制消息总线和信息服务总线,实现高效的数据通信和应用集成。同时,系统集成部分包括多个子系统,如智能变配电系统、远程空调控制等。这些信息需要整合到架构部分,说明SCADA系统的层次结构,尤其是核心组件和总线的作用。 引用[2]介绍了SCADA系统中的点或标签,分为软点和硬点,这可能涉及到数据采集的具体机制,比如如何通过传感器获取数据并存储在分布式数据库中。这部分需要在数据采集部分详细说明,同时解释软硬点的区别和应用。 引用[3]提到SCADA系统的发展历史,特别是局域网的使用和PC-based HMI软件的引入,这可能涉及到现代SCADA系统的架构演变,比如分层结构中的监控层和HMI的作用。这里需要结合架构的分层模型,说明各层的功能和技术发展带来的变化。 接下来,我需要确保回答结构清晰,按照用户要求分点阐述架构、监控功能、数据采集监控系统,并引用正确的引用标识。同时,生成的相关问题需要SCADA系统相关,可能涉及核心组件、数据采集方式、应用场景等。 需要注意的是,用户希望回答使用中文,并且数学表达式遵循指定格式,但在这个问题中可能涉及较少的数学内容,不过如果有的话,比如公式或算法,需要用正确的LaTeX格式。但根据引用内容,可能更多是系统架构的描述,可能不需要数学公式,但需要保持LaTeX的正确性,例如如果有变量或术语,可能需要用$符号包裹。 另外,回答中需要自然地添加引用标识,例如在提到分布式实时数据库时引用[^1],在提到数据点的时候引用[^2],在历史发展部分引用[^3]。 最后,生成的相关问题要围绕SCADA系统的架构、技术特点、应用等,确保问题有针对性,能够帮助用户进一步探索。例如,关于核心组件、MES的区别、实时数据库的作用等。</think>### SCADA系统架构核心技术解析 #### 一、系统架构 SCADA系统采用**分层架构**,核心组件包括: 1. **分布式实时数据库**:作为系统核心,负责存储所有监控点的实时数据(如设备状态、温度、压力等),支持毫秒级数据更新 2. **工业控制消息总线**:采用OPC UA、MQTT等协议,实现设备层监控层的数据传输 3. **信息服务总线**:通过REST API/SOAP接口,对接MES、ERP等上层系统 典型架构层级: $$ \begin{cases} \text{设备层} & \text{(PLC/传感器/执行器)} \\ \downarrow \text{通过现场总线通信} \\ \text{数据采集层} & \text{(RTU/通信服务器)} \\ \downarrow \text{经工业消息总线} \\ \text{监控层} & \text{(HMI/报警系统)} \\ \downarrow \text{通过信息服务总线} \\ \text{企业层} & \text{(MES/ERP/大数据平台)} \end{cases} $$ #### 二、监控功能实现 1. **数据采集机制**: - 硬点:直接来自物理设备的I/O信号(如4-20mA模拟量) - 软点:通过计算生成的虚拟数据点[^2] 2. **人机界面(HMI)**: - 支持动态工艺流程图显示 - 提供实时趋势曲线、历史数据回放功能 - 报警管理:基于$报警级别= \begin{cases} 紧急 & \text{阈值超限} \\ 警告 & \text{趋势异常} \end{cases}$ 的分级管理 #### 三、数据采集监控技术 1. **通信协议栈**: - 现场层:Modbus RTU/TCP, Profibus - 监控层:OPC DA/UA, DNP3 - 企业层:HTTPS, WebSocket 2. **数据存储结构**: - 实时数据库:采用环形缓冲区技术,存储周期可达100ms级 - 历史数据库:支持时间序列数据压缩存储,压缩率可达10:1[^3] #### 四、典型应用场景 1. 智能工厂:实现$设备综合效率(OEE)=可用率 \times 性能率 \times 合格率$的实时计算 2. 能源管理:通过$$P=\sqrt{3}UI\cos\phi$$进行三相电能质量监测 3. 环境监控:建立$CO_2浓度 = f(传感器读数, 温度补偿, 线性校正)$的数据处理模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BY-组态

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值