14、Eclipse MicroProfile、Narayana LRA 与 Linux 容器技术详解

Eclipse MicroProfile、Narayana LRA 与 Linux 容器技术详解

1. Eclipse MicroProfile 与 Narayana LRA 事务处理

1.1 LRA 基本概念与配置

LRA(Long Running Action)是处理长时间运行事务的一种机制。当设置 LRA.Type.REQUIRED 时,如果在 LRA 上下文之外调用方法,JAX - RS 过滤器会在方法调用期间开启一个新的 LRA,调用完成后,另一个 JAX - RS 过滤器会结束该 LRA。关键在于使用 @LRA 注解来处理 LRA 的生命周期。

同时,还定义了业务方法失败的情况,通过 cancelOn = {Response.Status.INTERNAL_SERVER_ERROR} 在返回 500 状态码时取消操作, cancelOnFamily = {Response.Status.Family.CLIENT_ERROR} 在返回任何 4xx 状态码时取消操作。

1.2 完成阶段(Complete Phase)

在完成阶段,LRA 协调器会调用带有 @Complete 注解的方法,以确保业务操作在数据状态上保持一致。以下是一个示例代码:

/**
 * LRA complete method: it sets the final status of the football player off
内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值