基于差分进化算法破解视觉隐写分析系统
1. 引言
随着数字信息和数据在互联网上的传输日益频繁,保护和确保敏感信息安全的新技术亟待开发。数字隐写术作为一门将信息隐藏在隐蔽通道中的艺术与科学,旨在隐藏信息并防止隐藏消息被检测。尽管隐写术历史悠久,但计算机技术为其带来了新的应用方向,例如在音频、视频和图像等多媒体内容中隐藏消息。
隐写术可分为技术隐写术、语言隐写术和数字隐写术三种类型。隐写分析系统主要分为空间域隐写分析系统(SDSS)和频率域隐写分析系统(FDSS)。此前,有研究提出基于遗传算法(GA)的隐写系统来破解隐写分析系统,但GA收敛到最优解的速度较慢。而差分进化(DE)算法是一种简单高效的连续空间全局优化自适应方案,能够以较高概率找到多维、多峰函数的全局最优解,因此本文将使用DE算法来提升隐写系统的性能。
2. 基于DE破解视觉隐写分析系统(VSS)的方法
- VSS检测原理 :许多简单的隐写技术在空间域嵌入秘密消息,VSS通过重新分配图像调色板中的颜色来检测GIF格式图像。其视觉过滤器可去除图像中可能包含消息的部分,产生被攻击的载体介质隐写图、提取潜在消息位并进行可视化展示。
- 生成隐写图像的标准 :为了生成能通过SDSS检查的隐写图像,消息应嵌入到特定位置以维持封面图像的统计特征。基于DE,通过以下两个标准调整空间域的像素值来生成隐写图像:
- 评估从隐写图像特定系数提取的消息,使其尽可能接近嵌入的消息。
- 评估隐写图像的统计特征,并与封面图像的统计特征进行比较,使差异尽可能小。