山东大学深度学习2025年期末考试

一、名词解释(24)

1.反向传播

2.激活函数

3.梯度裁剪

4.数据增强

5.迁移学习

6.过拟合

7.word2Vec

8.注意力机制

二、简答题(48)

1.池化的概念(作用)以及常见的两种池化操作

2.LSTM为什么能解决RNN的长期依赖问题

3.dropout为什么能抑制过拟合,其在训练和测试的实现差异

4.卷积神经网络比全连接网络更适合图像处理的三个原因

5.比较rnn、LSTM、transforms的性能差异

6.负采样的作用,以及负采样如何优化学习效率

三、综合题(28)

1.

(1)梯度消失的数学原因(4)

(2)三层神经网络,不考虑激活函数x=1,w1=0.5,w2=0.3,w3=0.2。给出前向传播的公式;dL/dy=1.0,求dL/dwi(6)

(3)三维卷积运算:输入数据32*32*3,10个卷积核5*5,步长为1,填充是0,求输出尺寸和参数数量;池化2*2,步长2,求池化尺寸(7)

2.

(1)CBOW和skip-gram的结构差异(4)

(2)LSTM中对语言模型的优化方法(4)

(3)seq2seq的不足,以及attention的机制是如何解决这个问题(4)


总结:考试更成熟了,题目更多了,知识点更细了

提醒:实验50%期末考试50%

相关资料:看一遍书(代码跳过)、复习笔记,概念汇总,往年试题

复习笔记

概念汇总

2024年期末试题

2023年期末试题

2022年期末试题

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值