68、生成1000个线程,每个线程将一个计数器递增100000次。比较使用AtomicLong和LongAdder的性能。
当有大量线程访问相同的原子值时, AtomicLong
性能会受影响,因为其更新是乐观执行的,在高并发下更新需要多次重试。而 LongAdder
由多个变量组成,多个线程可以更新不同的加数,当线程数量增加时会自动提供新的加数,在所有工作完成后才需要总和值的常见情况下效率更高。所以在本题场景中, LongAdder
的性能通常会优于 AtomicLong
。
69、使用 LongAccumulator 来计算累积元素的最大值或最小值,简述具体实现方法并给出示例代码。
可以使用 `LongAccumulator` 来计算累积元素的最大值或最小值。在构造函数中提供相应的操作以及其中性元素,然后调用 `accumulate` 方法纳入新值,最后调用 `get` 方法获取当前值。
例如,要计算最大值,可以这样做:
```java
LongAccumulator accumulator = new LongAccumulator(Long::max, Long.MIN_VALUE);
在任务中调用:
accumulator.accumulate(value);
当所有工作完成后,使用:
long max = accumulator.get();
获取最大值。
要计算最小值,可以这样做:
LongAccumulator accumulator = new LongAccumulator(Long::min, Long.MAX_VALUE);
在任务中调用:
accumulator.accumulate(value);
当所有工作完成后,使用:
long min = accumulator.get();
获取最小值。
##70、如何使用 ExecutorCompletionService 来在任务结果可用时立即合并结果?
可以按以下步骤实现:
1. 首先创建 `ExecutorCompletionService`
2. 然后提交任务
3. 最后在结果可用时获取并处理结果
示例代码如下:
```java
ExecutorCompletionService<T> service = new ExecutorCompletionService<>(executor);
for (Callable<T> task : tasks) {
service.submit(task);
}
for (int i = 0; i < tasks.size(); i++) {
// 获取已完成任务的结果
T result = (T) service.take().get();
// 合并结果的操作,这里假设存在一个 mergeResults 方法
mergeResults(result);
}
上述代码中:
-
executor
是一个Executor
对象 -
tasks
是一个Callable
任务列表 -
mergeResults
是自定义的用于合并结果的方法
71、编写一个程序,遍历目录树并为每个文件生成一个线程。在这些线程中,统计文件中的单词数量,并在不使用锁的情况下,更新一个声明为 public static long count = 0;
的共享计数器。多次运行该程序,会发生什么?为什么?
多次运行程序时,最终的计数器值可能无法正确达到所有文件单词数的总和。这是因为多个线程同时对共享计数器 count
进行更新操作时,会出现 竞态条件 。
由于 count++
不是原子操作,它包含以下三个步骤:
- 读取 当前值
- 增加 该值
- 写回 新值
在多线程环境下,这些步骤可能会交错执行,导致某些更新操作被覆盖,从而使最终结果 不准确 。
72、考虑这个队列实现:public class Queue {… } 描述该数据结构无法正确包含元素的两种不同情况。
-
多线程环境下,若未正确同步,可能出现数据不一致问题。例如,在
add
方法未同步时,多个线程同时添加元素,可能导致链表结构混乱,元素丢失或重复添加。 -
在
remove
方法中,若未正确处理队列为空的情况,可能会导致空指针异常或返回错误元素。例如,当队列已为空时调用remove
方法,可能会返回null
或错误的元素。
73、代码片段 public class Stack {… } 有什么问题?
仅给出类声明 `public class Stack {... }`,未展示类内部具体代码,无法判断存在什么问题。需结合类内部方法、变量等具体实现来分析,例如同步机制、方法逻辑、变量使用等方面是否存在错误。