电力场景下的图像重建与设备检测算法改进
在电力相关的图像分析和设备检测领域,有两项重要的研究成果值得关注。一项是关于光场重建的改进4D卷积角超分辨率(SR)网络,另一项是融合极化自注意力(PSA)机制改进的YOLOv5s电力作业可穿戴设备检测算法。下面将详细介绍这两项研究。
改进的4D卷积角SR网络用于光场重建
在光场图像的处理中,传统方法存在一些问题。例如,从光场相机捕获的图像解码得到的子视图,边缘到中心的亮度范围不同,边缘子视图较暗。若直接将解码图像作为输入,会影响网络的重建结果。因为在较暗的图像中,纹理信息会被抑制,网络难以提取有用特征,高频部分会模糊,不同物体的边界也会变得模糊,导致场景重建出现失真和重影。
为了解决这些问题,提出了一种改进的4D卷积角SR网络,该网络结合了注意力机制,具体步骤如下:
1. 图像增强预处理 :
- 将图像 $I(x, y)$ 划分为 $k$ 个 $N × N$ 的小块,得到局部区域集合 $R = {R_1, R_2, …, R_k}$。
- 对每个块进行直方图均衡化增强,增强公式为 $E_i(x, y) = T(R_i(x, y))$,其中 $T$ 是映射函数。
- 为避免对比度过度增加,对每个局部区域应用对比度限制,公式为:
[
CE_i(x, y) =
\begin{cases}
E_i(x, y), & \text{if } \sigma_i \leq H \
\frac{E_i(x,y)H}{\sigma_i}, & \text{if } \sigma_i > H
\end{