数据可视化:简单绘图与误差展示
1. 简单折线图
在数据可视化中,最简单的绘图类型之一就是单个函数 $y = f(x)$ 的可视化。下面我们将学习如何创建这种简单的绘图。
首先,我们需要设置绘图环境并导入所需的函数:
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-whitegrid')
import numpy as np
对于所有的 Matplotlib 绘图,我们都要先创建一个图形(figure)和一个坐标轴(axes)。最简单的创建方式如下:
fig = plt.figure()
ax = plt.axes()
在 Matplotlib 中,图形( plt.Figure
类的实例)可以看作是一个包含所有代表坐标轴、图形、文本和标签的对象的容器。坐标轴( plt.Axes
类的实例)则是我们看到的带有刻度和标签的边界框,最终会包含构成可视化的绘图元素。
创建好坐标轴后,我们可以使用 ax.plot
函数来绘制数据。例如,绘制一个简单的正弦曲线:
fig = plt.figure()
ax = plt.axes()
x = np.linspace(0, 10, 1000)