37、基于HOG特征的简单人脸检测算法实现

基于HOG特征的简单人脸检测算法实现

1. HOG特征提取

HOG(Histogram of Oriented Gradients)特征是一种用于目标检测的特征描述符,在人脸检测中有着广泛的应用。其主要步骤如下:
1. 归一化每个单元格的直方图 :通过与相邻单元格块进行比较,进一步抑制图像中光照的影响。
2. 构建一维特征向量 :从每个单元格的信息中构建一维特征向量。

在Scikit - Image项目中,内置了快速的HOG提取器,以下是一个简单的示例代码,用于提取图像的HOG特征并可视化:

from skimage import data, color, feature
import skimage.data
import matplotlib.pyplot as plt

image = color.rgb2gray(data.chelsea())
hog_vec, hog_vis = feature.hog(image, visualise=True)

fig, ax = plt.subplots(1, 2, figsize=(12, 6),
                       subplot_kw=dict(xticks=[], yticks=[]))
ax[0].imshow(image, cmap='gray')
ax[0].set_title('input image')
ax[1].imshow(hog_vis)
ax[1].set_title('visualization of HOG feat
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值