[AI]从零开始的树莓派运行DeepSeek模型教程

一、前言

        在前面的教程中,教了大家如何在windows中使用llama.cpp来运行DeepSeek模型。根据前面的教程中,我们也了解到了,我们只需要编译好llama.cpp就可以运行DeepSeek以及类似的LLM模型。那么本次教程就来教大家如何使用树莓派来运行大模型。这里我树莓派运行的是Linux系统,也就是说,你将本次教程中的内容学会以后,你可以在任何Linux和类Linux的终端中完成大模型的部署。如果你准备好了,就让我们开始吧!

二、谁适合本次教程

        因为已经涉及到操作Linux了,并且还是操作Linux的开发板,学习本教程之前请具备一定的Linux基础和一定的解决问题的能力。本次的操作可以说是比较简单的,一般不会出现问题,如果你在安装环境或者编译时报错,可以尝试在浏览器中寻找类似的错误与这个错误对应的解决办法。学习本教程之前,建议学习我之前发布的在windows中运行llama.cpp的教程:

llama.cpp环境部署:[AI]从零开始的llama.cpp部署与DeepSeek格式转换、量化、运行教程_deepseek hf转gguf-CSDN博客

因为树莓派的性能太低了,我们需要对模型进行量化才能使用,所以现在的方案是,在windows上将模型格式和量化处理好,然后再将模型文件传输到树莓派上。而完成上面的操作就需要部署llama.cpp。 

三、环境的准备

        这里要求大家准备一个树莓派,这里我使用的是树莓派5,当然,也建议大家使用树莓派5。树莓派5运行1B并且F16量化的模型已经非常慢了。所以不推荐大家使用树莓派5以下的版本。这里要求大家将树莓派的系统安装好,并且可以远程到或者是使用HDMI连接显示器。总之需要大家能够操作到树莓派就行了。后面我就使用SSH远程树莓派进行演示。

四、llama.cpp的编译

        这里已经我为我的树莓派装好了一个全新的系统,并且使用SSH连接到了树莓派:

还有就是要求大家树莓派连接到互联网,这里假如我们ping一个网址需要能ping通:

1.安装llama.cpp编译所需的环境

        因为树莓派本质属于国外的嵌入式开发板,所以可能一些软件源我们拉取比较慢甚至无法拉取,那么现在我们就来换一些树莓派的下载源。这里参考了:debian | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

这里我们首先使用下面的命令打开软件源的配置文件:

sudo nano /etc/apt/sources.list

这里我们使用“#”将原本的源都注释掉:

然后将下面的内容复制到原本的源的下面:

deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm main contrib
deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm-updates main contrib
deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bookworm-backports main contrib

完成以上操作以后,我们保存并退出文件。

这里我们使用下面的命令来更新一下我们重新设置的源:

sudo apt update

如图所示,我们已经更新好了:

下面我们来安装编译所需的环境,直接使用下面的命令即可:

sudo apt install cmake gcc g++

这里执行完上面的命令以后llama.cpp的环境就安装完成了。

2.llama.cpp源码拉取

        这里拉取llama.cpp的源码我们需要使用到git命令,下面我们先使用下面的命令来安装一下git:

sudo apt install git

安装好git命令以后,我们就可以直接使用下面的命令拉取llama.cpp的源码了:

git clone https://github.com/ggml-org/llama.cpp.git

如果你这里拉取失败了,可以尝试配置一些正向代理,这里用小猫咪的代理举例,大家开启局域网代理,并且启动系统代理:

然后使用下面的命令来配置git clone的代理:

git config --global http.proxy http://192.168.112.22:7890
git config --global https.proxy http://192.168.112.22:7890

这里的“192.168.112.22”是我在内网中小猫咪所在设备的IP地址,大家写成自己的即可。

配置完成以后,我们应该就可以借助小猫咪的代理将llama.cpp的源码拉下来了:

如果有小伙伴使用上面的方法没办法拉取项目,可以考虑使用下面的git镜像站拉取:

git clone https://gitee.com/ggml-org/llama.cpp.git

使用gitee需要大家输入以下自己的账号。

如果上面的方法都不行,那就直接前往llama.cpp的开源主页下载源码压缩包,llama.cpp开源主页:

下载完以后,大家自行解压即可。解压得到的文件和直接拉取得到的文件是一样的。

不管是直接使用命令还是下载的压缩包进行解压,我们就可以得到下面的文件和文件夹:

3.llama.cpp的编译

        现在我们准备开始编译llama.cpp。这里我们需要在llama.cpp的项目目录下新建一个文件夹,我们在llama.cpp的项目目录下使用下面的命令:

mkdir build

然后使用下面的命令进入这个目录:

cd build/

进入目录以后,我们使用下面的命令生成makefile文件:

cmake .. -DLLAMA_NATIVE=OFF

这里加上“-DLLAMA_NATIVE=OFF”是为了在ARM设备中提升兼容性。

执行命令以后,就生成了编译相关的文件,这些文件指导了编译的过程:

命令执行完以后,我们的bulid目录下也多了很多文件:

然后我们使用下面的命令进行编译:

make -j$(nproc)

后面的“-j$(nproc)”是为了自动传递多核参数。也就是说它会自动识别树莓派的处理器数量并且调用处理器进行编译。

命令执行以后,编译就开始了:

编译的过程中可能出现警告,大家不用在意。只要没出现错误,都可以忽略。因为树莓派的性能确实比较低,所以编译的时间也相对较长。

如果你在未来的某天构建失败了,首先可以考虑去llama.cpp的开源主页看看编译目前的llama.cpp需要多少的cmake版本。当然,也可以将cmake和llama.cpp都降级到我目前的版本。现在是2025年2月23日,目前我的CMake版本是“3.25.1”:

当我们编译结束以后,build的bin文件夹下,就生成了许多可执行文件,这些就是我们后面要用到文件了:

至此,我们llama.cpp的编译就结束了。

五、使用llama.cpp运行GGUF格式的模型

        在前面我们已经部署好了llama.cpp,现在我们就使用llama.cpp来运行GGUF格式的模型了,至于什么是GGUF格式的模型以及如何对模型进行量化,在之前的windows部署llama.cpp里面讲过。大家可以参考那篇教程:

llama.cpp的部署及使用:[AI]从零开始的llama.cpp部署与DeepSeek格式转换、量化、运行教程_deepseek hf转gguf-CSDN博客

当我们将一个模型格式转换,这里我使用“DeepSeek-R1-Distill-Qwen-1.5B”模型,格式转换后如图所示:

这里我们使用ftp服务将这个文件传输到树莓派中,在终端中输入下面的命令:

sftp chulingxiao@192.168.112.10

这里的“chulingxiao”是登录使用的用户名,大家输入自己的用户名即可。后面的IP地址大家修改为自己树莓派的IP地址即可。

进入sftp模式以后,就可以使用sftp命令了:

使用put命令上传文件,格式如下:

put 本地文件路径 树莓派文件路径

这里我们首先在树莓派的llama.cpp的models目录下新建一个以模型名称命名的目录,使用下面的命令:

mkdir DeepSeek-R1-Distill-Qwen-1.5B

然后使用sftp将本地的模型文件上传到我们新建的目录中,这里我使用的命令如下,大家根据自己的路径修改命令即可:

ut F:\OpenProject\llama.cpp\models\DeepSeek-R1-Distill-Qwen-1.5B\DeepSeek-R1-Distill-Qwen-1.5B-F16.gguf /home/chulingxiao/llama.cpp/models/DeepSeek-R1-Distill-Qwen-1.5B/

模型上传后,如图所示:

模型上传完成以后,我们就用我们编译出来的二进制文件来运行这个模型,这里我们回到项目目录使用下面的命令:

./build/bin/llama-cli -m ./models/DeepSeek-R1-Distill-Qwen-1.5B/DeepSeek-R1-Distill-Qwen-1.5B-F16.gguf

大家这里需要根据自己的路径写命令。

输入命令以后。模型就启动起来了:

启动完成以后,就可以进行对话了:

至此,我们在树莓派运行DeepSeek就已经完成了。以后,只要是类似的模型都可以使用这样的方法来使用树莓派来运行。

六、结语

        本次教程中,教了大家如何使用树莓派来运行DeepSeek大模型,当然,也希望大家具有举一反三的能力,上面的方法在其它的Linux系统中也适用。剩下的就留给大家自己探索吧!最后,感谢大家的观看!

<think>好的,我现在需要帮助用户解决在树莓派上搭建DeepSeek模型或环境的问题。首先,用户的问题比较具体,但DeepSeek模型可能是一个特定的AI模型,我需要确认其是否存在公开的安装指南或者官方文档。不过,根据用户提供的引用[^1],里面提到的是在树莓派上安装Intel OpenVINO工具包,这可能与用户的问题相关,但DeepSeek可能并不直接使用OpenVINO。 首先,我需要明确DeepSeek模型的具体情况。可能用户指的是深度求索公司的模型,比如DeepSeek-R1或者DeepSeek-Math等,这些模型通常基于深度学习框架如TensorFlow或PyTorch。因此,搭建环境可能需要安装这些框架的树莓派兼容版本。 树莓派的系统要求方面,由于树莓派的硬件资源有限,尤其是RAM和CPU,需要确认模型是否有轻量级版本或者是否支持ARM架构。例如,64位系统可能更适合运行某些框架,而32位系统可能会有兼容性问题。用户可能需要升级到Raspberry Pi OS 64位版本。 安装步骤方面,可能需要先安装Python环境,使用虚拟环境管理工具如venv或conda,然后安装必要的依赖库。由于树莓派的ARM架构,某些Python包可能需要从源码编译,这可能会遇到问题,比如内存不足或编译时间过长。此外,模型文件可能需要从官方渠道下载,并确保其兼容性。 性能优化方面,模型可能需要量化或者使用特定的推理引擎如OpenVINO或TensorFlow Lite来加速。用户提供的引用[^1]中提到的OpenVINO安装指南可能在这里派上用场,尤其是如果DeepSeek模型支持OpenVINO的话。 另外,需要考虑到树莓派的存储空间,大型模型文件可能需要外部存储。用户可能需要扩展存储或使用高速SD卡。 最后,生成相关问题需要考虑用户可能遇到的后续问题,比如性能优化、模型选择、依赖问题等。需要确保这些问题与搭建环境相关,并且能够帮助用户进一步解决问题。</think>### 如何在树莓派上搭建DeepSeek模型环境 #### 一、系统要求 1. **硬件要求** - 推荐使用树莓派4B或5(至少4GB RAM) - 存储空间建议32GB以上(SD卡或SSD) - 支持ARMv8架构的64位系统(Raspberry Pi OS 64位) 2. **软件依赖** - Python 3.8+ - PyTorch/TensorFlow的ARM兼容版本 - ONNX Runtime或OpenVINO(用于推理加速)[^1] #### 二、安装步骤 1. **系统准备** ```bash # 更新系统 sudo apt update && sudo apt upgrade -y # 安装必要依赖 sudo apt install python3-venv libopenblas-dev libatlas-base-dev ``` 2. **Python虚拟环境** ```bash python3 -m venv deepseek_env source deepseek_env/bin/activate ``` 3. **框架安装(以PyTorch为例)** ```bash # 安装ARM兼容版PyTorch pip3 install torch==2.1.0 torchvision==0.16.0 --index-url https://download.pytorch.org/whl/rocm5.6 ``` 4. **模型部署** ```bash # 下载DeepSeek模型(示例) git clone https://github.com/deepseek-ai/example-repo # 安装模型依赖 pip install -r requirements.txt ``` 5. **推理加速配置** ```bash # 安装OpenVINO(参考引用[1]) wget https://apt.repos.intel.com/openvino/2023/GPG-key.pub sudo apt-key add GPG-key.pub echo "deb https://apt.repos.intel.com/openvino/2023 all main" | sudo tee /etc/apt/sources.list.d/intel-openvino-2023.list sudo apt update && sudo apt install openvino ``` #### 三、验证安装 ```python # test_deepseek.py import torch from deepseek import load_model model = load_model("deepseek-v1") print(torch.__version__) print(model.eval()) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值