Knowledge Graph Embedding: A Survey of Approaches and Applications (1)

本文是对知识图谱相关文章阅读翻译,《Knowledge Graph Embedding: A Survey of Approaches and Applications》。

摘要

知识图谱(KG)嵌入是将KG的组成部分(包括实体和关系)嵌入连续向量空间,以简化操作,同时保留KG的固有结构。它可以有益于各种下游任务,如KG完成和关系提取,因此迅速获得了广泛关注。在本文中,我们系统地回顾了现有技术,不仅包括最新技术,还包括最新趋势。特别是,我们根据嵌入任务中使用的信息类型进行回顾。首先介绍了仅使用KG中观察到的事实进行嵌入的技术。我们描述了总体框架、具体的模型设计、典型的训练程序以及这些技术的优缺点。之后,我们将讨论除事实之外还包含其他信息的技术。我们特别关注实体类型、关系路径、文本描述和逻辑规则的使用。最后,我们简要介绍了KG嵌入如何应用于并有益于各种下游任务,如KG填充、关系提取、问答等。

1. 引言

近年来,知识图谱(KG)的构建和应用迅速增长。大量KG,如Freebase、DBpedia、YAGO和NELL已经被创建并成功应用于许多实际应用,从语义解析和命名实体消歧,到信息提取和问答。KG是由实体(节点)和关系(不同类型的边)组成的多关系图。每个边表示为形式的三元组(头部实体、关系、尾部实体),也称为事实,表示两个实体通过特定关系连接,例如(Alfredhichcock、DirectorOf、Psycho)。尽管在表示结构化数据方面有效,但这种三元组的潜在符号性质通常使KG难以操作。
为了解决这个问题,提出了一个称为知识图嵌入的新研究方向,并迅速获得了大量关注。关键思想是将KG的组件(包括实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值