SUMO: Subspace-Aware Moment-Orthogonalization for Accelerating Memory-Efficient LLM Training

文章主要内容和创新点总结

主要内容
  1. 研究背景
    • 现有低秩梯度优化方法(如GaLore)虽能减少LLM训练内存消耗,但依赖标准最速下降技术,忽略了各向异性损失景观下的收敛加速潜力。
    • 传统优化器(如Adam、Shampoo)在高维空间中计算成本高,近似正交化方法(如Newton-Schulz)存在误差累积问题,尤其在LLM训练的病态条件下表现不佳。
  2. 核心方法:SUMO优化器
    • 子空间感知矩正交化:利用动态低维子空间(通过随机截断SVD更新),对一阶矩矩阵进行精确SVD正交化,避免Newton-Schulz的近似误差。
    • 理论分析:证明矩矩阵在训练中呈指数级低秩化趋势,推导Newton-Schulz误差上界与条件数的关系,证明SVD正交化可显著提升收敛速率。
    • 算法设计:结合低秩梯度投影、矩变换、SVD正交化和范数增长限制,在减少内存的同时保持高效优化。
  3. 实验验证
    • 微调任务ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值