CREFT: Sequential Multi-Agent LLM for Character Relation Extraction

在这里插入图片描述

文章主要内容

本文提出了一种用于长文本叙事中角色关系提取的顺序多智能体大语言模型框架CREFT。该框架通过两个主要阶段处理叙事数据:首先利用知识蒸馏从文本块中提取主谓宾三元组,构建基础角色图;然后通过多个专门的LLM智能体依次优化角色组成、显式/隐式关系提取、角色识别和分组。实验在韩国电视剧数据集上表明,相比单智能体基线,CREFT在角色召回率、组匹配F1分数等指标上显著提升,尤其在处理别名合并、隐含关系和动态角色分组方面表现更优。研究还讨论了PPR算法在角色选择中的有效性,并指出组分配在模糊叙事中的挑战,为娱乐、出版和教育领域的叙事分析提供了高效工具。

创新点

  1. 顺序多智能体框架:通过分工明确的LLM智能体迭代优化角色关系提取的不同环节(如别名合并、关系分类、角色分组),突破单智能体在复杂任务中的局限性。
  2. 知识蒸馏构建基础图:使用GPT-4o生成标注数据,微调韩语LLM以安全提取三元组,避免直接调用LLM API的隐私问题。
  3. 系统化角色关系结构(CRS)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值