MELT: Towards Automated Multimodal Emotion Data Annotation by Leveraging LLM Embedded Knowledge

文章主要内容

本文针对语音情感识别(SER)中人工标注成本高、一致性差的问题,提出利用大型语言模型(LLMs)中的GPT-4o进行多模态情感数据自动标注的方法。作者基于《老友记》电视剧构建了多模态情感数据集MELT,仅通过文本提示引导GPT-4o生成情感标注,无需直接访问音频/视频数据。实验表明,MELT在主观评分(MOS)和客观分类任务中均优于人工标注的MELD数据集,且成本显著降低(≤10美元)。研究验证了LLMs在多模态标注中的潜力,为自动化情感数据标注提供了新范式。

创新点

  1. 首次将GPT模型用于多模态情感数据标注
    利用GPT-4o训练中积累的隐含知识(如对《老友记》的文化认知),仅通过文本提示实现音频情感标注,突破传统依赖人工或多模态输入的限制。

  2. 提出上下文感知的自动标注框架
    结合思维链推理(CoT)交叉验证的提示工程,确保标注的一致性和准确性,生成包含情感标签、音高、响度等细粒度特征的结构化输出。

  3. 构建低成本、高质量的MELT数据集
    相比人工标注

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值