AFLoRA: Adaptive Federated Fine-Tuning of Large Language Models with Resource-Aware Low-Rank

在这里插入图片描述

文章主要内容

本文针对异构资源和非独立同分布(Non-IID)数据环境下大型语言模型(LLMs)的联邦微调问题,提出了一种名为AFLoRA的自适应轻量级联邦微调框架。该框架通过以下核心机制解决现有挑战:

  1. 解耦更新机制:将LoRA的低秩矩阵分解为共享矩阵A(服务器端优化)和客户端特定矩阵B(客户端优化),减少聚合干扰并平衡泛化能力与领域知识。
  2. 基于对角矩阵的动态秩剪枝:引入可学习的对角矩阵Λ,根据客户端数据特征和资源动态调整有效秩,剔除低信息维度,降低冗余和通信开销。
  3. 秩感知聚合与公共数据优化:通过零填充对齐不同秩的矩阵,结合数据规模和秩权重进行聚合,并利用服务器端公共数据优化共享矩阵A,提升模型在Non-IID场景下的泛化能力。

实验结果表明,在通用数据集(如WizardLM、Databricks-Dolly)和领域数据集(如FinGPT-Sentiment、AG News)上&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值