A Simple Linear Patch Revives Layer-Pruned Large Language Models

文章主要内容总结

本文针对大语言模型(LLMs)层剪枝后的性能下降问题,提出了一种名为LINEARPATCH的即插即用技术。通过分析发现,剪枝接口处的激活幅度不匹配(尤其是层间通道幅度差异和特殊标记的离群值)是性能下降的主要原因。LINEARPATCH通过以下方式解决该问题:

  1. 哈达玛变换(Hadamard Transformation):抑制特殊标记(如[BOS])的离群值,将激活值重新分布到所有通道,减少标记间的幅度方差。
  2. 通道缩放(Channel-wise Scaling):引入对角缩放参数矩阵,对齐剪枝前后的层间通道幅度。
  3. 矩阵融合:将哈达玛变换和通道缩放融合为一个对称矩阵(LINEARPATCH),插入剪枝接口,仅需一次矩阵乘法,推理开销可忽略。
  4. 内存高效的离线知识蒸馏:通过冻结模型其他参数,仅微调LINEARPATCH矩阵,使用5K样本和单卡30分钟即可进一步提升性能。

实验表明,在LLaMA-3-8B上剪枝5层时,LINEARPATCH保留了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值