Causal-aware Large Language Models: Enhancing Decision-Making Through Learning, Adapting and Acting

在这里插入图片描述

论文主要内容总结

研究背景与问题

大语言模型(LLMs)在决策领域展现出巨大潜力,但预训练模型存在推理能力不足、难以适应新环境的问题,严重制约了其在复杂现实任务中的应用。现有方法如强化学习(RL)单独使用或LLM辅助RL的方式,仍依赖token预测范式,缺乏结构化推理和快速适应性。

核心框架与方法

提出因果感知大语言模型(Causal-aware LLMs),将结构因果模型(SCM)整合到决策过程中,采用“学习-适应-行动”的迭代范式:

  1. 学习阶段:利用LLM从环境中提取因果实体及关系,初始化环境的结构化因果模型。
  2. 适应阶段:通过因果干预技术,基于环境反馈更新因果模型,修正LLM可能产生的幻觉信息。
  3. 行动阶段:结合更新后的因果知识,通过RL代理实现更高效的决策制定,指导策略学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值