TRIDENT: Enhancing Large Language Model Safety with Tri-Dimensional Diversified Red-Teaming Data

在这里插入图片描述

论文主要内容总结

  1. 研究背景与问题
    • 大语言模型(LLMs)在自然语言处理任务中表现卓越,但存在生成有害内容或被恶意利用的风险。
    • 现有安全对齐数据集通过监督微调(SFT)缓解风险,但存在关键缺陷:仅关注词汇多样性,忽略恶意意图和越狱策略的覆盖,导致模型在面对复杂攻击时防御能力不足。
  2. 核心方法与框架
    • 三维风险分析框架:从词汇多样性、恶意意图、越狱策略三个维度系统评估对齐数据集的风险覆盖。
    • TRIDENT自动化流水线:利用基于 persona 的零样本LLM生成多样化指令,结合安全LLM(如GPT-4O-MINI)生成道德响应,构建数据集。
    • 数据集构建
      • TRIDENT-CORE:26,311个样本,聚焦词汇和恶意意图多样性。
      • TRIDENT-EDGE&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值