Breaking the Gold Standard: Extracting Forgotten Data under Exact Unlearning in Large Language Model

论文主要内容与创新点总结

主要内容
  1. 研究背景与问题
    大语言模型(LLMs)训练数据中可能包含敏感信息,隐私法规(如GDPR、CCPA)要求移除特定数据,“精确遗忘”(Exact Unlearning)被视为数据移除的“黄金标准”,即通过重新训练模型去除目标数据的影响。但本文指出,即使是精确遗忘,仍可能存在隐私漏洞。

  2. 核心方法

  • 提出一种基于模型引导(Model Guidance)标记过滤策略(Token Filtering) 的数据提取攻击方法。
  • 利用遗忘前模型(θ)和遗忘后模型(θ’)的差异,通过θ引导θ’的生成过程,捕捉被移除数据的分布特征。
  • 标记过滤策略限制生成token为θ中高概率词汇,提升提取准确性。
  1. 实验验证
  • 在MUSE、TOFU、WMDP等基准数据集及模拟医疗数据集上,该方法提取成功率较基线方法提升显著(部分场景下翻倍&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值