文章主要内容总结
SEAR(Social Engineering via AR-LLM)是一个多模态数据集,旨在研究增强现实(AR)与多模态大语言模型(LLM)驱动的社会工程(SE)攻击威胁。该数据集包含60名参与者在模拟会议、课堂等场景中的180段标注对话,整合了AR捕捉的视听线索(如面部表情、语调)、环境上下文、社交媒体资料,以及信任评分、易感性评估等主观指标。
核心发现显示,SEAR攻击的合规率极高:93.3%的参与者点击钓鱼链接,85%接听诈骗电话,76.7%在互动后信任度显著提升。数据集支持AR驱动社会工程攻击的检测研究、防御框架设计及多模态对抗操纵机制分析,并通过匿名化和IRB合规性确保伦理使用。其官网为:https://github.com/INSLabCN/SEAR-Dataset。
文章创新点总结
- 首个多模态AR-LLM社会工程数据集:整合AR视觉/音频数据、LLM生成的对话及主观信任指标,填补单模态研究空白。
- 五层结构化数据框架:包含对话场景、个人信息、社会档案、互动对话和事后调查,覆盖攻击全流程。</