Predic‘ng Early-Onset Colorectal Cancer with Large Language Models

文章主要内容总结

  1. 研究背景与目的:早发性结直肠癌(EoCRC,年龄<45岁)发病率逐年上升,但现有筛查指南推荐年龄为45岁,导致年轻患者确诊时多为晚期。研究旨在利用电子健康记录(EHR)数据,通过机器学习(ML)和大型语言模型(LLM)预测EoCRC,以实现早期干预。
  2. 数据与方法
    • 回顾性分析美国多个医疗系统的1,953例CRC患者,收集确诊前6个月的患者状况、实验室结果和观察数据。
    • 对比10种ML模型(如逻辑回归、随机森林、XGBoost等)和微调后的GPT-4o LLM的性能。
    • 数据处理:排除家族史、克罗恩病等病例,平衡训练集,使用五折交叉验证优化模型。
  3. 主要结果
    • 微调后的LLM平均敏感性73%,特异性91%,阴性预测值99.7%,优于多数ML模型。
    • ML模型中,梯度提升方法(如XGBoost)和逻辑回归表现较好,但受限于数据不平衡,精度较低。
    • LLM可生成自然语言解释,如通过症状、实验室结果(如癌
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值