文章主要内容总结
本文是一篇关于对话式搜索(Conversational Search)的教程,聚焦于大型语言模型(LLMs)时代下对话式搜索的基础原理与前沿发展。核心内容包括:
-
对话式搜索的基本概念与动机:
对话式搜索通过多轮交互理解用户复杂信息需求,区别于传统关键词搜索,其系统需结合对话上下文解析意图,并以灵活对话界面返回结果。LLMs的出现(如指令跟随、内容生成、推理能力)为对话式搜索带来新机遇,推动用户信息获取行为从单轮向多轮交互转变,同时也带来了技术整合的挑战(如对话建模、检索增强生成等)。 -
教程的目标与结构:
- 基础内容:涵盖对话式搜索的核心范式(查询重写检索、对话密集检索)、混合主动策略(澄清问题、主动建议等)、常用数据集(如OR-QuAC、TREC CAsT)及评估指标(nDCG、nugget-based evaluation)。
- LLM驱动的新兴话题:包括自动评估(基于LLM生成相关性判断)、生成与检索的结合(生成增强检索GAR、检索