Text-to-LoRA: Instant Transformer Adaption

在这里插入图片描述

文章主要内容和创新点总结

主要内容

本文提出了一种名为Text-to-LoRA(T2L) 的超网络模型,旨在解决大型语言模型(LLMs)任务适配中的效率问题。传统的模型适配方法(如LoRA)需要为每个任务单独优化适配器,依赖特定数据集和耗时的微调,而T2L通过自然语言描述即可实时生成任务特定的LoRA适配器,仅需一次低成本的前向传播。

  • 核心机制:T2L是一种超网络,通过训练学习压缩预训练的LoRA适配器,并能基于自然语言任务描述生成新的LoRA。其训练方式包括两种:一是重构预训练的LoRA适配器(蒸馏已有知识),二是通过多任务监督微调(直接在下游任务上优化)。
  • 实验验证:在9个预训练LoRA适配器(如GSM8K、Arc等)上训练后,T2L生成的适配器性能接近任务特定适配器;同时,T2L能压缩数百个LoRA,并零样本泛化到完全未见过的任务,在多个基准测试中
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值