文章主要内容总结
本文提出了一种名为CROP(Circuit Retrieval and Optimization with Parameter Guidance using LLMs)的框架,旨在解决超大规模集成电路(VLSI)设计中电子设计自动化(EDA)工具的参数调优问题。由于EDA流程参数空间庞大(随参数数量呈指数增长),传统手动调优或基于算法的自动调优方法存在效率低、依赖大量样本的缺陷,CROP通过以下方式实现高效参数优化:
-
两阶段框架设计:
- 阶段1(数据库构建):将已有电路的RTL源代码通过LLM分析生成模块级和整体设计摘要,再转换为密集向量表示(嵌入),同时存储这些设计的最优参数配置(参数指导)。
- 阶段2(检索增强参数搜索):对新设计执行相同的LLM分析和嵌入生成,通过最大内积搜索(MIPS)从数据库中匹配语义相似的设计,利用其参数指导结合检索增强生成(RAG)技术,引导LLM进行参数搜索,约束搜索空间并加速收敛。
-
实验效果:在工业级设计上,CROP相比传统方法(如随机搜索、Optuna、贝叶斯优化)能以更少迭代次数获得更优的结果质量(QoR),例如使功耗降低9.9%,且在面积、时序等指标上表现出协同优化能力。