T-LoRA: Single Image Diffusion Model Customization Without Overfitting

在这里插入图片描述

文章主要内容总结

本文针对扩散模型在单张图像定制场景中易出现过拟合(如位置、背景固化)的问题,提出了一种基于时间步依赖的低秩适应框架T-LoRA(Timestep-Dependent Low-Rank Adaptation)。研究发现,扩散过程中的高时间步(噪声更大的阶段)比低时间步更易过拟合,因此需要时间步敏感的微调策略。

T-LoRA通过两个核心创新解决该问题:

  1. 动态微调策略(Vanilla T-LoRA):根据扩散时间步调整秩约束更新,高时间步减少训练信号以减轻过拟合,低时间步增加训练信号以保留细节;
  2. 正交初始化权重参数化(Ortho-LoRA):通过奇异值分解(SVD)初始化适配器组件,确保其正交性,提升有效秩利用率并分离不同时间步的信息流。

实验表明,T-LoRA在单图定制任务中优于标准LoRA及其他轻量化方法(如OFT、GSOFT、SVDiff),在概念保真度和文本对齐之间实现了更优平衡,尤其在数据有限和资源受限场景中表现突出。

创新点

  1. 发现高时间步过拟合特性:首次明确扩散模型的高时间步(噪声更大阶段)是过拟合的主要来源,为时间步敏感策略提供理论基础;
  2. 动态秩调整机制:提
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值