文章主要内容总结
本文针对扩散模型在单张图像定制场景中易出现过拟合(如位置、背景固化)的问题,提出了一种基于时间步依赖的低秩适应框架T-LoRA(Timestep-Dependent Low-Rank Adaptation)。研究发现,扩散过程中的高时间步(噪声更大的阶段)比低时间步更易过拟合,因此需要时间步敏感的微调策略。
T-LoRA通过两个核心创新解决该问题:
- 动态微调策略(Vanilla T-LoRA):根据扩散时间步调整秩约束更新,高时间步减少训练信号以减轻过拟合,低时间步增加训练信号以保留细节;
- 正交初始化权重参数化(Ortho-LoRA):通过奇异值分解(SVD)初始化适配器组件,确保其正交性,提升有效秩利用率并分离不同时间步的信息流。
实验表明,T-LoRA在单图定制任务中优于标准LoRA及其他轻量化方法(如OFT、GSOFT、SVDiff),在概念保真度和文本对齐之间实现了更优平衡,尤其在数据有限和资源受限场景中表现突出。
创新点
- 发现高时间步过拟合特性:首次明确扩散模型的高时间步(噪声更大阶段)是过拟合的主要来源,为时间步敏感策略提供理论基础;
- 动态秩调整机制:提