FuzzFeed: An Automatic Approach to Weakest Precondition Generation using LLMs and Fuzzing

文章主要内容和创新点

主要内容

本文提出了一种名为FuzzFeed的自动生成最弱前置条件(Weakest Precondition, WP)的方法,该方法结合大语言模型(LLMs)和模糊测试(fuzzing)技术,通过模糊测试引导(Fuzzing Guidance, FG)机制优化LLM生成的候选WP,最终提高WP的正确性和弱性(weakness)。

  • 核心背景:最弱前置条件是程序初始状态的最大集合,确保程序终止时满足后置条件,在程序验证、运行时错误检查等领域至关重要。传统方法依赖形式化方法,存在适用范围有限等问题。
  • 方法设计:FG包含两个模糊测试阶段——有效性模糊测试(validity-fuzzing)和弱性模糊测试(weakness-fuzzing)。前者验证候选WP的有效性(满足WP的初始状态是否一定满足后置条件),后者验证其弱性(是否覆盖所有满足后置条件的初始状态);测试结果作为反馈,通过修复提示(repair prompts)引导LLM迭代优化WP。
  • 实验验证:在四类Java数组程序基准集(Existential、Universal、Sorting、Search)上测试,对比GPT-4o和O4-mini模型在有无FG的表现,结果显示FG能显著提升LLM生成WP的质量,甚至使低成本模型(如GPT-4o)性能接近高成本推理模型(如O4-mini)。
创新点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值