本地运行Segment Anything

按原项目GitHub - facebookresearch/segment-anything: The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.步骤

Install Segment Anything:

pip install git+https://github.com/facebookresearch/segment-anything.git

or

git clone [email protected]:facebookresearch/segment-anything.git
cd segment-anything; pip install -e .

但 报错<

### 如何在本地环境部署 Segment Anything 模型 #### 准备工作 为了成功地在 Windows 11 上部署 Segment Anything (SAM),需要先准备好 Python 和 PyTorch 的开发环境。确保已安装适合当前系统的 CUDA 版本,可以通过 `nvidia-smi` 命令来查看本地的 CUDA 版本[^3]。 #### 安装Python和PyTorch环境 进入 [PyTorch官方网站](https://pytorch.org/get-started/locally/) 并依据个人计算机的具体配置选取合适的安装指令完成 PyTorch 的安装。如果使用的是 CUDA 11.7,则应按照该网站给出的对应命令执行安装操作。 #### 获取并设置 SAM 库及相关资源 访问 GitHub 上由 luca-medeiros 维护的仓库 [lang-segment-anything](https://github.com/luca-medeiros/lang-segment-anything)[^2] ,克隆此项目至本地机器上。考虑到在线获取预训练模型可能会遇到速度缓慢甚至失败的情况,推荐提前手动下载好所需的各种模型文件(如 SAM、GroundingDINO 及其依赖项 bert-base-uncased),并将它们保存于指定路径下以便后续调用。 #### 配置 Jupyter Notebook 环境 为了让实验更加便捷直观,可考虑搭建一个基于 Jupyter Notebook 或 Lab 的交互式编程平台来进行探索性的数据分析与可视化展示。这一步骤并非强制要求,但对于初学者来说会非常有帮助[^1]。 #### 放置 Model Checkpoints 文件 将之前准备好的模型权重文件放置在一个易于管理的位置,并记录下确切位置用于之后加载模型时提供给脚本作为参数输入。例如,假设已经把 checkpoint 存储到了 D:\models\sam_vit_h_4b8939.pth 中,则需记住这个地址以供下一步骤使用[^5]。 #### 测试验证 最后通过运行如下所示的一段简单的 Python 脚本来检验整个流程是否正常运作: ```python import sys sys.path.append('path_to_lang_segment_anything') from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' sam_checkpoint = "D:/models/sam_vit_h_4b8939.pth" model_type = "vit_h" sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=device) mask_generator = SamAutomaticMaskGenerator(sam) predictor = SamPredictor(sam) print("Model loaded successfully.") ``` 上述代码片段展示了如何导入必要的库函数以及初始化 SAM 实例的过程;其中特别注意要调整 `sys.path.append()` 方法内的字符串为实际存放 lang-segment-anything 工程目录所在之处,同时也要更新变量 `sam_checkpoint` 所指向的确切路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值