在OpenCV里实现二维离散卷积1

本文介绍了二维离散卷积在图像处理中的应用,特别是用于平滑图像以消除噪声。详细阐述了卷积运算的过程,包括矩阵翻转、元素相乘累加,并通过实例展示了如何进行边界处理。此外,还讨论了不同的边界填充方法,如零填充,以确保计算的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在前面学习的内容主要是对图像进行增强的操作,不过图像可能还有某种干扰的像素,这些像素可能是由噪声引起的,噪声可以理解为由一种或多种原因造成的灰度值的随机变化,比如电磁波通讯时受到干扰。为了解决这个问题,在大多数情况之下,通过平滑技术(或称为滤波技术)进行抑制或者消除,常用的平滑处理算法包括二维离散卷积的高斯平滑、均值平滑,基于统计方法的中值平滑等等。

 

在进行平滑算法之前,先来温习一下二维离散卷积的处理过程,假设有下面两个二维矩阵:

图像的像素组成的矩阵为x,这是一个5X5的矩阵,然后要使用一个卷积核为h,这是一个3X3的矩阵,要对这个图像进行卷积运算需要进行下面的操作。

第一步:将矩阵逆时针翻转180度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

caimouse

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值