条件分布、期望、方差与大数定律
条件分布、期望与方差
条件分布、期望和方差是概率统计中的重要概念。下面将详细介绍这些概念及其相关公式和性质。
关键公式与性质
- 条件密度函数 :对于联合分布的连续随机变量 (X) 和 (Y),给定 (X = x) 时 (Y) 的条件密度函数为 (f_{Y|X}(y|x) = \frac{f(x, y)}{f_X(x)}),其中 (f_X(x) > 0)。
- 连续贝叶斯公式 :(f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{\int_{-\infty}^{\infty}f_{Y|X}(y|t)f_X(t) dt})。
- 条件期望 :
- 给定 (X = x) 时 (Y) 的条件期望 (E[Y|X = x]),对于连续情况为 (\int_{y} yf_{Y|X}(y|x) dy),对于离散情况为 (\sum_{y} yP(Y = y|X = x))。
- (E[Y|X]) 是一个随机变量,也是 (X) 的函数,当 (X = x) 时,(E[Y|X]) 取值为 (E[Y|X = x])。
- 全期望定律 :(E[Y] = E[E[Y|X]])。
- 条件期望的性质 :
- 对于常数 (a) 和 (b),(E[aY + bZ