格兰杰因果关系检验 Granger Causality Test

文章介绍了如何使用格兰杰因果关系检验来判断五粮液的收盘价是否有助于预测茅台的收盘价。首先对数据进行平稳性检验,然后构建AR(p)模型,接着加入五粮液收盘价的滞后项,最后通过F检验来确定五粮液的收盘价是否为茅台收盘价的格兰杰原因。如果F统计量大于临界值,则拒绝原假设,表明存在因果关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单思想与步骤

格兰杰因果关系检验,从某种意义上说,并不是真实的因果关系,而是在于判断一个时间序列对于另一个时间序列的预测是否有促进作用。

比如对于茅台和五粮液的收盘价数据,我们想判断五粮液的收盘价是否有助于预测茅台的收盘价,步骤如下
第一步,对数据进行平稳性检验,不平稳的话进行差分之后再检验;
第二步,找到一个关于茅台收盘价的最佳AR(p)AR(p)AR(p)模型,假设ytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+ϵty^{mt}_t=\phi_0+\phi_1y_{t-1}^{mt}+\phi_2y_{t-2}^{mt}+\epsilon_tytmt=ϕ0+ϕ1yt1mt+ϕ2yt2mt+ϵt
第三步,加入五粮液的收盘价数据的滞后项,比如ytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+γ1yt−1wly+γ2yt−2wly+ϵty_t^{mt}=\phi_0+\phi_1y_{t-1}^{mt}+\phi_2y_{t-2}^{mt}+\gamma_1y_{t-1}^{wly}+\gamma_2y_{t-2}^{wly}+\epsilon_tytmt=ϕ0+ϕ1yt1mt+ϕ2yt2mt+γ1yt1wly+γ2yt2wly+ϵt
最后一步,利用F检验,判断是否显著,若拒绝原假设,则说明五粮液的收盘价是茅台收盘价的格兰杰原因(Granger Causal)

关于最后一步,还需要补充几点:

  1. 关于加入五粮液收盘的滞后项,要多换几次不同滞后项进行尝试
  2. 关于F检验的原假设与具体公式如下:
    H0:γ1=γ2=…=0H_0: \gamma_1=\gamma_2=\ldots=0H0:γ1=γ2==0,即ytwlyy_t^{wly}ytwly不是ytmty_t^{mt}ytmt的格兰杰原因
    H1:H_1:H1: 至少有一个γi\gamma_iγi不为0
    F=(SSErm−SSEum)/pSSEum/(n−k)∼F(p,n−k)F=\dfrac{(SSE_{rm}-SSE_{um})/p}{SSE_{um}/(n-k)}\sim F(p,n-k)F=SSEum/(nk)(SSErmSSEum)/pF(p,nk)其中,SSErmSSE_{rm}SSErm为约束模型的残差平方和,在本例中即指ytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+ϵty^{mt}_t=\phi_0+\phi_1y_{t-1}^{mt}+\phi_2y_{t-2}^{mt}+\epsilon_tytmt=ϕ0+ϕ1yt1mt+ϕ2yt2mt+ϵt的残差平方和;SSEumSSE_{um}SSEum为无约束模型的残差平方和,在本例中即指ytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+γ1yt−1wly+γ2yt−2wly+ϵty_t^{mt}=\phi_0+\phi_1y_{t-1}^{mt}+\phi_2y_{t-2}^{mt}+\gamma_1y_{t-1}^{wly}+\gamma_2y_{t-2}^{wly}+\epsilon_tytmt=ϕ0+ϕ1yt1mt+ϕ2yt2mt+γ1yt1wly+γ2yt2wly+ϵt的残差平方和;pppytmty_t^{mt}ytmt的滞后项数量,nnn为样本数,kkk为无约束模型中的待估参数个数
    则在本例中,F=(SSErm−SSEum)/2SSEum/(n−4−1)∼F(2,n−5)F=\dfrac{(SSE_{rm}-SSE_{um})/2}{SSE_{um}/(n-4-1)}\sim F(2,n-5)F=SSEum/(n41)(SSErmSSEum)/2F(2,n5)
    显然,当SSErmSSE_{rm}SSErmSSEumSSE_{um}SSEum越大,说明无约束模型相比于有约束模型的预测效果越好,故当F>FαF>F_\alphaF>Fα时,拒绝H0H_0H0ytwlyy_t^{wly}ytwlyytmty_t^{mt}ytmt的格兰杰原因。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

quantao_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值