简单思想与步骤
格兰杰因果关系检验,从某种意义上说,并不是真实的因果关系,而是在于判断一个时间序列对于另一个时间序列的预测是否有促进作用。
比如对于茅台和五粮液的收盘价数据,我们想判断五粮液的收盘价是否有助于预测茅台的收盘价,步骤如下
第一步,对数据进行平稳性检验,不平稳的话进行差分之后再检验;
第二步,找到一个关于茅台收盘价的最佳AR(p)AR(p)AR(p)模型,假设ytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+ϵty^{mt}_t=\phi_0+\phi_1y_{t-1}^{mt}+\phi_2y_{t-2}^{mt}+\epsilon_tytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+ϵt;
第三步,加入五粮液的收盘价数据的滞后项,比如ytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+γ1yt−1wly+γ2yt−2wly+ϵty_t^{mt}=\phi_0+\phi_1y_{t-1}^{mt}+\phi_2y_{t-2}^{mt}+\gamma_1y_{t-1}^{wly}+\gamma_2y_{t-2}^{wly}+\epsilon_tytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+γ1yt−1wly+γ2yt−2wly+ϵt;
最后一步,利用F检验,判断是否显著,若拒绝原假设,则说明五粮液的收盘价是茅台收盘价的格兰杰原因(Granger Causal)
关于最后一步,还需要补充几点:
- 关于加入五粮液收盘的滞后项,要多换几次不同滞后项进行尝试
- 关于F检验的原假设与具体公式如下:
H0:γ1=γ2=…=0H_0: \gamma_1=\gamma_2=\ldots=0H0:γ1=γ2=…=0,即ytwlyy_t^{wly}ytwly不是ytmty_t^{mt}ytmt的格兰杰原因
H1:H_1:H1: 至少有一个γi\gamma_iγi不为0
F=(SSErm−SSEum)/pSSEum/(n−k)∼F(p,n−k)F=\dfrac{(SSE_{rm}-SSE_{um})/p}{SSE_{um}/(n-k)}\sim F(p,n-k)F=SSEum/(n−k)(SSErm−SSEum)/p∼F(p,n−k)其中,SSErmSSE_{rm}SSErm为约束模型的残差平方和,在本例中即指ytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+ϵty^{mt}_t=\phi_0+\phi_1y_{t-1}^{mt}+\phi_2y_{t-2}^{mt}+\epsilon_tytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+ϵt的残差平方和;SSEumSSE_{um}SSEum为无约束模型的残差平方和,在本例中即指ytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+γ1yt−1wly+γ2yt−2wly+ϵty_t^{mt}=\phi_0+\phi_1y_{t-1}^{mt}+\phi_2y_{t-2}^{mt}+\gamma_1y_{t-1}^{wly}+\gamma_2y_{t-2}^{wly}+\epsilon_tytmt=ϕ0+ϕ1yt−1mt+ϕ2yt−2mt+γ1yt−1wly+γ2yt−2wly+ϵt的残差平方和;ppp为ytmty_t^{mt}ytmt的滞后项数量,nnn为样本数,kkk为无约束模型中的待估参数个数
则在本例中,F=(SSErm−SSEum)/2SSEum/(n−4−1)∼F(2,n−5)F=\dfrac{(SSE_{rm}-SSE_{um})/2}{SSE_{um}/(n-4-1)}\sim F(2,n-5)F=SSEum/(n−4−1)(SSErm−SSEum)/2∼F(2,n−5)
显然,当SSErmSSE_{rm}SSErm比SSEumSSE_{um}SSEum越大,说明无约束模型相比于有约束模型的预测效果越好,故当F>FαF>F_\alphaF>Fα时,拒绝H0H_0H0,ytwlyy_t^{wly}ytwly是ytmty_t^{mt}ytmt的格兰杰原因。