leetcode题目地址
给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数。
示例 1 :
输入:nums = [1,1,1], k = 2
输出: 2 , [1,1] 与 [1,1] 为两种不同的情况。
说明 :
- 数组的长度为 [1, 20,000]。
- 数组中元素的范围是 [-1000, 1000] ,且整数 k 的范围是 [-1e7, 1e7]。
首先想到的思路是在暴力循环的基础上保存累加的中间计算结果,python3代码如下:
class Solution:
def subarraySum(self, nums, k):
sum_list = [nums[0]]
for i in range(len(nums) - 1):
sum_list.append(sum_list[i]+nums[i+1])
res = 0
for i in range(len(sum_list)):
sumi = sum_list[i]
if sumi == k:
res += 1
for j in range(i):
if sumi-sum_list[j] == k:
res+=1
return res
提交发现超时,对应的C++代码可以通过测试:
class Solution {
public:
int subarraySum(vector<int>& nums, int k) {
int res = 0, n = nums.size();
vector<int> sums = nums;
for (int i = 1; i < n; ++i) {
sums[i] = sums[i - 1] + nums[i];
}
for (int i = 0; i < n; ++i) {
if (sums[i] == k) ++res;
for (int j = i - 1; j >= 0; --j) {
if (sums[i] - sums[j] == k) ++res;
}
}
return res;
}
};
比较快的算法是将列表换成字典来保存之前的计算结果,而不必两层循环,python3代码如下:
class Solution:
def subarraySum(self, nums, k):
res = 0
sum_list = []
sum_dict = dict({(0,1)})
for i in range(len(nums)):
if i == 0:
sumi = nums[i]
else:
sumi = sum_list[i-1]+nums[i]
sum_list.append(sumi)
ksub = sumi - k
num = sum_dict.get(ksub)
if not num is None:
res += num
num = sum_dict.get(sumi)
if not num is None:
sum_dict[sumi] = num+1
else:
sum_dict[sumi] = 1
return (res)