文章目录
老铁们✌,重要通知🙌!福利来了!!!😉
亲们,老铁最近熬夜帮你们整理了更完整、更棒的机器学习岗面试题总结,在这里哟:
https://download.csdn.net/download/cc13186851239/14934986
https://download.csdn.net/download/cc13186851239/14935027
资料介绍:从机器学习模型,线性模型(LR,Lasso,Ridge),验证方式(过拟合,欠拟合,交叉验证等),分类,正则化,特征工程,决策树,KNN,SVM,集成学习等13个模块来分别来描述最全面的面试问题
小伙伴们抓紧来学习,稳稳地上大厂,高Base它不香嘛!
4.评估指标
4.1 什么是准确率,精准率,召回率和F1分数?混淆矩阵
准确率 = (TP+TN)/总样本数 = 预测正确的结果占总样本的百分比
4.2 模型常用的评估指标有哪些?
4.2.1 Precision(查准率)
精准率(Precision) = TP/(TP+FP) =所有被预测为正的样本中实际为正的样本的概率
4.2.2 Recall(查全率)
召回率(Recall) = TP/(TP+FN) = 在实际为正的样本中被预测为正样本的概率
查准率和查全率是一对矛盾的度量,一般而言,查准率高时,查全率往往偏低;而查全率高时,查准率往往偏低。
4.2.3 P-R曲线
横轴为召回率(查全率),纵轴为精准率(查准率);
引入“平衡点”(BEP)来度量,表示“查准率=查全率”时的取值,值越大表明分类器性能越好。
4.2.4 F1-Score
准确率和召回率的权衡: 只有在召回率Recall和精确率Precision都高的情况下,F1 score才会很高,比BEP更为常用。
4.2.5 ROC和AUC
4.2.5.1什么是ROC曲线?如何判断 ROC 曲线的好坏?
ROC曲线:横轴为FPR,纵轴为TPR
灵敏度TPR = TP/(TP+FN) 特异度FPR = TN/(FP+TN)
真正率(TPR) = 灵敏度 = TP/(TP+FN) –> 真阳性率 = 召回 = TPR
假正率(FPR) = 1- 特异度 = FP/(FP+TN)
FPR的含义:所有确实为“假”的样本中,被误判真的样本。
TPR 越高,同时 FPR 越低(即 ROC 曲线越陡),那么模型的性能就越好。
4.2.5.2 什么是AUC?
AUC: ROC曲线下的面积,AUC的取值范围在0.5和1之间。
衡量二分类模型优劣的一种评价指标,表示正例排在负例前面的概率。
4.2.5.3 如何解释AU ROC分数?
表示预测准确性,AUC值越高: 预测准确率越高,反之越小 预测准确率越低。
AUC如果小于0.5,说明预测诊断比随机性猜测还差,实际情况中不应该出现这种情况,可能是设置的状态变量标准有误,需要查看设置。
4.3 多标签分类怎么解决?
问题转换
二元关联(Binary Relevance)
分类器链(Classifier Chains)
标签Powerset(Label Powerset)
改编算法: kNN的多标签版本是由MLkNN表示
集成方法: Scikit-Multilearn库提供不同的组合分类功能