机器学习 面试题-第四章 评估指标(大厂必问,历经半年整理)

本文详细介绍了机器学习中常用的评估指标,包括准确率、精准率、召回率、F1分数、ROC曲线、AUC以及多标签分类问题的解决方法。通过这些指标可以有效地评估和比较不同模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

老铁们✌,重要通知🙌!福利来了!!!😉


亲们,老铁最近熬夜帮你们整理了更完整、更棒的机器学习岗面试题总结,在这里哟:
https://download.csdn.net/download/cc13186851239/14934986
https://download.csdn.net/download/cc13186851239/14935027
资料介绍:从机器学习模型,线性模型(LR,Lasso,Ridge),验证方式(过拟合,欠拟合,交叉验证等),分类正则化特征工程决策树KNN,SVM,集成学习等13个模块来分别来描述最全面的面试问题
小伙伴们抓紧来学习,稳稳地上大厂,高Base它不香嘛!


4.评估指标

4.1 什么是准确率,精准率,召回率和F1分数?混淆矩阵

在这里插入图片描述

准确率 = (TP+TN)/总样本数 = 预测正确的结果占总样本的百分比

4.2 模型常用的评估指标有哪些?

4.2.1 Precision(查准率)

精准率(Precision) = TP/(TP+FP) =所有被预测为正的样本中实际为正的样本的概率

4.2.2 Recall(查全率)

召回率(Recall) = TP/(TP+FN) = 在实际为正的样本中被预测为正样本的概率
查准率和查全率是一对矛盾的度量,一般而言,查准率高时,查全率往往偏低;而查全率高时,查准率往往偏低。

4.2.3 P-R曲线

在这里插入图片描述
横轴为召回率(查全率),纵轴为精准率(查准率);
引入“平衡点”(BEP)来度量,表示“查准率=查全率”时的取值,值越大表明分类器性能越好。

4.2.4 F1-Score

调和平均:

准确率和召回率的权衡‍: 只有在召回率Recall和精确率Precision都高的情况下,F1 score才会很高,比BEP更为常用。

4.2.5 ROC和AUC

4.2.5.1什么是ROC曲线?如何判断 ROC 曲线的好坏?

在这里插入图片描述

ROC曲线:横轴为FPR,纵轴为TPR
灵敏度TPR = TP/(TP+FN) 特异度FPR = TN/(FP+TN)
真正率(TPR) = 灵敏度 = TP/(TP+FN) –> 真阳性率 = 召回 = TPR
假正率(FPR) = 1- 特异度 = FP/(FP+TN)
FPR的含义:所有确实为“假”的样本中,被误判真的样本。
TPR 越高,同时 FPR 越低(即 ROC 曲线越陡),那么模型的性能就越好。

4.2.5.2 什么是AUC?

在这里插入图片描述

AUC: ROC曲线下的面积,AUC的取值范围在0.5和1之间。
衡量二分类模型优劣的一种评价指标,表示正例排在负例前面的概率。

4.2.5.3 如何解释AU ROC分数?

表示预测准确性,AUC值越高: 预测准确率越高,反之越小 预测准确率越低。
AUC如果小于0.5,说明预测诊断比随机性猜测还差,实际情况中不应该出现这种情况,可能是设置的状态变量标准有误,需要查看设置。

4.3 多标签分类怎么解决?

问题转换
	二元关联(Binary Relevance)
	分类器链(Classifier Chains)
	标签Powerset(Label Powerset)	
改编算法: kNN的多标签版本是由MLkNN表示
集成方法: Scikit-Multilearn库提供不同的组合分类功能
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cc13186851239

觉得不错的,鼓励一下我,奥利给

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值