静息态功能磁共振成像:关于静息态功能连接和脑网络分析方法

静息态功能磁共振成像(rs-fMRI)技术揭示了大脑在无刺激状态下的内在活动,特别是在静息态功能连接性方面的研究。通过基于种子点的分析、独立成分分析(ICA)和图论分析等方法,科学家们能深入了解大脑网络的结构和功能。rs-fMRI在儿科患者、无意识障碍患者等群体中展现出巨大潜力,且在帕金森病、阿尔茨海默病等疾病的病理学研究中具有临床应用价值。图论分析尤其能揭示大脑网络的整合和分离特性,为理解大脑的复杂功能提供了新的视角。尽管rs-fMRI目前主要作为研究工具,但有望在未来成为临床诊断的重要辅助手段。

自诞生之初,人类就对大脑中发生的事情充满好奇。功能磁共振成像是一种重要的工具,它有助于无创地检查、定位和探索大脑的语言、记忆等功能。近年来,神经科学研究的焦点明显转向了“静息态”下的大脑研究。重点是在没有任何感官或认知刺激的情况下大脑内部的内在活动。对静息态下大脑功能连接的分析揭示了不同的静息态网络,这些网络描述了特定的功能和不同的空间拓扑结构。虽然不同的统计方法被引入到静息态功能磁共振成像连接性的研究中,但得到了一致的结果。在本文中,我们详细介绍了静息态功能磁共振成像的概念,然后讨论了三种最广泛使用的分析方法、描述了几种具有脑区特征的静息态网络及相关认知功能、静息态功能磁共振成像的临床应用。本综述旨在强调静息态功能磁共振成像连接性研究的实用性和重要性,强调其与基于任务的功能磁共振成像的互补性质。本文发表在The Neuroradiology杂志。

关键词:图论分析Graph analysis, 独立成分分析independent component analysis, 静息态功能连接resting state functional connectivity, 基于种子点的分析seed-based analysis引言 静息态功能磁共振成像(rs-fMRI,resting state functional magnetic resonance imaging)技术比其他功能磁共振成像(fMRI)技术更有优势,因为它易于采集信号,对患者的要求最少,并能熟练地识别不同患者群体的功能区域,如儿科人群、无意识患者、低智商患者等。

任务态功能磁共振成像(task-based fMRI)是一种用于分析和评估大脑的功能区域的先进的磁共振技术。在这项技术中,受试者被指导执行被设计为针对单一功能的特定的任务,如运动、语言、记忆、视觉、注意力和感觉功能任务。

最近的研究发现,儿科患者,有意识障碍的患者,即昏迷、植物人和最低意识状态的患者,能够完成rs-fMRI。Rs-fMRI在Biswal及其同事研究运动皮层的传递功能和大脑噪声源后进入临床领域。静息态信号在0.01-0.08 Hz范围内具有一致的低频波动。事实上,即使在休息或放松的状态下,人类的大脑也在运作。rs-fMRI的一个非常有趣的方面是——在任务fMRI研究中被舍弃的信号被考虑在内,因为这些信号是自发波动,而且出现在大脑不同的皮层网络系统中。尽管血氧依赖水平(BOLD,blood oxygenation level dependent )对比是静息态和任务态fMRI背后的基本现象,但研究发现两种技术之间存在一些显著差异。表1显示了rs-fMRI与task fMRI的比较。

表1 rs-fMRI与task fMRI的简单比较

fMRI:功能磁共振成像;rs-fMRI:静息态功能磁共振成像;BOLD:血氧依赖水平;SMR:信噪比。

即使在静息态,大脑也会消耗惊人的大量能量。一个成年人的大脑重量只占整个身体重量的2%,但是大脑消耗的能量大约占总能量消耗的20%。此外,研究证实,大脑利用60-80%的能量在神经元和它们的支持细胞之间进行通信(这是内在活动),而对于任务诱发的活动,大脑只利用0.5-1.0%的总能量。能量消耗的主要部分是用于大脑的内在活动,与大脑中暗能量的存在有关,类似于宇宙中的暗能量。

BOLD fMRI

rs-fMRI依赖于BOLD信号中自发的低频波动。事实上,BOLD对比是任务态和静息态fMRI形成的基础。Ogawa等人首先认识到BOLD对比完全依赖于血氧水平的潜在重要性。由于氧合血红蛋白的反磁效应和脱氧血红蛋白的顺磁效应,脱氧血红蛋白浓度低的体素会导致BOLD信号增加,而浓度高的体素会导致BOLD信号减少。负责BOLD效应的脱氧血红蛋白也受到生理因素的影响,如脑血流量、脑血容量和脑氧代谢率。

脑连接性分析技术

总的来说,连接性是研究大脑两个不同区域之间的相互作用。解剖连接性是大脑两个解剖区域之间的物理连接,可以借助结构成像和弥散张量成像获得。功能连接(FC,Functional connectivity)试图在线性时间相关性的帮助下建立两个感兴趣的空间区域之间的联系。有效连接(effective connectivity)是FC分析的一个较高层次,因为它估计了功能连接区域之间潜在的直接因果联系。最终有效连接是基于数据时如何被影响的机制模型获得的。FC是根据神经元活动参数之间的相关性推断出来的,而有效连接性是指一个神经系统对另一个神

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值