目录
欢迎订阅FPGA/MATLAB/Simulink系列教程
信道估计是在通信系统中,对信道的特性进行估计的过程。由于实际通信信道往往是时变的、多径的,会使信号在传输过程中发生失真、衰减等,接收端需要通过信道估计来获取信道的状态信息,以便进行后续的信号处理,如解调、译码等,从而提高通信质量和可靠性。
1.信道估计类型
基于导频的信道估计:在发送信号中插入已知的导频序列,接收端根据接收到的导频信号与发送的导频序列之间的关系来估计信道。例如在无线通信的OFDM系统中,会在频域或时域特定位置插入导频符号,接收端利用这些导频符号的已知特性,通过相关运算等方法来估计信道在这些位置的频率响应或冲激响应。
盲信道估计:不需要发送专门的导频序列,而是利用接收信号的统计特性等信息来估计信道。比如利用信号的高阶统计量、信号的循环平稳特性等,通过一些复杂的算法,如子空间算法等,来提取信道信息。
半盲信道估计:结合了基于导频和盲信道估计的方法,既利用部分导频信息,又利用接收信号的统计特性等进行信道估计,以在估计性能和复杂度之间取得平衡。
2.常见信道估计算法
3.信道均衡
信道均衡是为了补偿信道的频率选择性衰落和时延扩展等影响,使接收端能够正确恢复发送信号的技术。它通过在接收端对信号进行处理,调整信号的幅度和相位,以消除码间干扰(ISI)等,提高信号的传输质量。常见均衡方法包括:
线性均衡:线性均衡器根据接收信号的线性组合来估计发送信号。常见的有横向滤波器结构,它由多个抽头延迟线组成,每个抽头都有一个加权系数,通过调整这些加权系数来对接收信号进行滤波处理,以补偿信道的失真。
判决反馈均衡(DFE):DFE 利用已经判决输出的信号反馈来消除当前信号中的码间干扰。它由前馈滤波器和反馈滤波器组成,前馈滤波器用于消除前面码元对当前码元的干扰,反馈滤波器用于消除后面码元对当前码元的干扰,通过不断迭代更新滤波器系数来提高均衡效果。
最大似然序列估计(MLSE):MLSE 是一种基于最大似然准则的均衡方法,它考虑了所有可能的发送序列,计算接收信号与每个可能发送序列经过信道后的匹配程度,选择匹配度最高的序列作为估计的发送序列,从而实现最优的均衡效果,但计算复杂度较高。
4.本章学习计划
信道估计为信道均衡提供信道状态信息,均衡器需要根据信道估计的结果来调整其参数,以实现更好的均衡效果。准确的信道估计可以使均衡器更有效地补偿信道的失真和干扰,而均衡后的信号也可以用于进一步提高信道估计的精度,两者相互配合,共同提高通信系统的性能。
在本章中,我们将重点学习基于LS算法的信道估计与均衡FPGA实现。首先对基础的LS信道估计与均衡实现方法进行Verilog实现。然后实现不同的导频图样对LS信道估计性能的影响,分析不同的插值方法对LS信道估计的影响。最后,我们实现MMSE信道估计,并和LS信道估计进行对比。