大语言模型发展迅速,但面临高存储和计算成本等问题,轻量化技术成为关键。它涵盖量化、稀疏化、知识蒸馏、低秩分解、参数共享等多种方法,各有特点和适用场景,如量化可减少内存占用,稀疏化能降低计算成本 。通过这些技术,可在减少模型计算复杂度和内存占用的同时,尽可能保持性能和泛化能力,应用于手机端侧、智能驾驶舱、医疗、工业等多个领域。此外,量子计算等新研究路径也在探索中,未来大模型轻量化技术将朝着与硬件更好结合、平衡稀疏率与效果、实现端云高效推理体系的方向发展。
详细总结
- 大语言模型轻量化技术需求:
大语言模型发展迅速,但面临高存储和计算成本等问题,轻量化技术成为关键。它涵盖量化、稀疏化、知识蒸馏、低秩分解、参数共享等多种方法,各有特点和适用场景,如量化可减少内存占用,稀疏化能降低计算成本 。通过这些技术,可在减少模型计算复杂度和内存占用的同时,尽可能保持性能和泛化能力,应用于手机端侧、智能驾驶舱、医疗、工业等多个领域。此外,量子计算等新研究路径也在探索中,未来大模型轻量化技术将朝着与硬件更好结合、平衡稀疏率与效果、实现端云高效推理体系的方向发展。
详细总结