【视觉SLAM】4-SLAM前端之视觉里程计Visual Odometry

1. 前言

1.1 里程计(Odometry)

在里程计问题中,可利用多种手段来测量物体的运动轨迹,如在汽车轮胎上安装计数码盘,通过测量轮胎转动圈数获得行驶距离。完成这种运动估计的装置(包括硬件和算法)称为里程计(Odometry)

里程计的一个很重要的特性是,它只关心局部时间上的运动,多为两个时刻间的运动。通常以估计间隔对时间采样,进而估计物体在各时刻之间的运动,这就导致误差(估计误差、噪声等)会不断累积,这种现象称为漂移(Drift)。SLAM流程中的回环检测可纠正漂移带来的全局误差。

1.2 视觉里程计(Visual Odometry,VO)

视觉里程计指主要依赖视觉传感器的里程计,如单/双目相机。注意,在前文介绍的SLAM框架中,VO也被称为前端

VO的核心问题是从几个相邻图像中估计相机运动,这主要基于相邻图像间的相似性。目前视觉里程计的主要算法分为特征点法(稀疏方法)直接法(稠密方法) 两大类。

2. 特征点法

2.1 特征点

从图像中提取有代表性的点(称为特征点),进而通过匹配不同时刻图像中的特征点来估计相机运动。在经典SLAM模型中,这些点被称为路标(Landmark);在视觉SLAM中,这些点被称为特征(Feature)

常用的特征点提取方法有:

  • 简单的角点特征:Harris,FAST,GFTT;
  • 更鲁棒的具有
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值