cherry-studio配置硅基流动快速使用DeepSeek大模型

Cherry-Studio是一个AI客户端,而硅基流动是一个AI计算平台,它们的结合可以让用户快速部署DeepSeek大模型。

“Cherry-Studio配置硅基流动,通过云端API实现DeepSeek大模型的极速部署,无需复杂配置和高配硬件,提供流畅的AI开发体验。

1、下载安装cherry-studio

Cherry Studio - 全能的AI助手

根据操作系统选择对应的版本安装

下载后执行Cherry-Studio-0.9.24-setup.exe安装,

配置硅基流动key

如何获取硅基流动API密钥

### 流动Cherry Studio配置教程 #### 一、环境准备 为了成功部署流动DeepSeek大模型使用Cherry Studio,在开始之前需要确保拥有合适的运行环境。这通常意味着一台具有足够计算资源(尤其是GPU支持)的机器以及Python开发环境已经就绪。 #### 二、安装Cherry Studio 按照官方提供的指导完成Cherry Studio软件包的获取与安装过程[^2]。此过程中需要注意版本兼容性和依赖项管理,以避免后续可能出现的技术难题。 #### 三、加载预训练模型 一旦Cherry Studio被正确设置好之后,则可以着手于导入由流动生成的大规模语言模型——即DeepSeek系列之一。具体操作涉及指定路径指向存储着所需权重文件的位置,并确认所有必要的配置选项都已适当调整以便顺利启动服务[^1]。 ```python from cherry_studio import ModelLoader model_loader = ModelLoader() deepseek_model = model_loader.load('path/to/deepseek/weights') ``` #### 四、执行推理任务 当一切准备工作完成后,即可利用所加载好的DeepSeek来进行实际的数据处理工作。这里可以通过API接口向该模型提交待分析文本片段作为输入,并接收经过预测后的输出结果用于进一步的应用场景中去。 ```python input_text = "example sentence" output_result = deepseek_model.predict(input_text) print(output_result) ``` #### 五、撰写技术分享文章 最后一步是在像CSDN这样的平台上记录整个项目实施经历和技术细节。编写此类博文不仅有助于个人总结学习成果,还能为其他开发者提供有价值的参考资料。建议围绕以下几个方面展开叙述: - **背景介绍**:解释为什么选择这个特定的主题进行研究; - **解决方案概述**:描述采用了哪些工具和技术来解决问题; - **实践经验分享**:详细介绍遇到的问题及其解决办法; - **未来展望**:讨论下一步计划或是对该领域发展趋势的看法;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值