如何使用Python实现生成对抗网络(GAN)

生成对抗网络(GAN)是一种深度学习模型,由两个部分组成:生成器和判别器。生成器负责生成与训练数据相似的新数据,而判别器负责判断输入数据是真实的还是由生成器生成的。这两个部分不断相互博弈,直到生成器能够生成非常逼真的数据,使判别器难以区分生成数据和真实数据。

下面是一个简单的 Python 实现,使用 TensorFlow 和 Keras 库。在开始之前,请确保已经安装了 TensorFlow 和 Keras。

import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, ZeroPadding2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.models import Model
def generator_layer(inputs, num_channels):
    inputs = Input(shape=(inputs.get_shape()[-1],))
    x = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)
    x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
    x = ZeroPadding2D((1, 1))(x)
    x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
    x = Conv2D(64, (3, 3), activation='relu', padding&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值