生成对抗网络(GAN)是一种深度学习模型,由两个部分组成:生成器和判别器。生成器负责生成与训练数据相似的新数据,而判别器负责判断输入数据是真实的还是由生成器生成的。这两个部分不断相互博弈,直到生成器能够生成非常逼真的数据,使判别器难以区分生成数据和真实数据。
下面是一个简单的 Python 实现,使用 TensorFlow 和 Keras 库。在开始之前,请确保已经安装了 TensorFlow 和 Keras。
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, ZeroPadding2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.models import Model
def generator_layer(inputs, num_channels):
inputs = Input(shape=(inputs.get_shape()[-1],))
x = Conv2D(32, (3, 3), activation='relu', padding='same')(inputs)
x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = ZeroPadding2D((1, 1))(x)
x = Conv2D(64, (3, 3), activation='relu', padding='same')(x)
x = Conv2D(64, (3, 3), activation='relu', padding&