引言
在处理大量文档和信息时,简单的搜索可能很难满足我们的需求。想象一下,我们正在开发一个基于视频的搜索引擎,希望它能精准地找到某段时间内发布的相关视频。如果我们只依赖于将用户输入直接用于相似度搜索,这种方法会有什么局限性?在本文中,我们将探讨如何通过查询分析来提高搜索精度。
主要内容
1. 安装和环境设置
为了简化过程,我们将使用LangChain库和YouTube视频转录插件来加载和处理视频数据。
# %pip install -qU langchain langchain-community langchain-openai youtube-transcript-api pytube langchain-chroma
准备好API密钥以便使用OpenAI进行文本嵌入:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
2. 文档加载与预处理
我们可以使用YoutubeLoader
从YouTube获取视频转录,将其转化为文档对象。
from langchain_community.document_loaders import YoutubeLoader
import datetime
urls = [
"https://www.youtube.com/watch?v=HAn9vnJy6S4",
# 其他视频链接
]
docs = []
for url in urls:
docs.extend(YoutubeLoader.from_youtube_url(url, add_video_info=True).load())
for doc in docs:
doc.metadata["publish_year"] = int(
datetime.datetime.strptime(
doc.metadata["publish_date"], "%Y-%m-%d %H:%M:%S"
).strftime("%Y")
)
3. 索引与检索
我们使用向量存储来索引文档,同时通过文本分割来提高检索效率。
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000)
chunked_docs = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = Chroma.from_documents(
chunked_docs,
embeddings,
)
4. 查询分析的重要性
在进行简单的相似度搜索时,我们可能无法获得想要的结果,特别是当我们想按特定年份进行过滤时。这是因为简单搜索无法处理文档属性。为了解决这个问题,我们可以通过查询分析将用户问题转化为结构化查询。
from typing import Optional
from langchain_core.pydantic_v1 import BaseModel, Field
class Search(BaseModel):
query: str = Field(..., description="Similarity search query applied to video transcripts.")
publish_year: Optional[int] = Field(None, description="Year video was published")
通过调用OpenAI的工具API,我们将用户输入转化为更优化的结构化查询。
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
structured_llm = llm.with_structured_output(Search)
query_analyzer = {"question": RunnablePassthrough()} | prompt | structured_llm
5. 带有查询分析的检索
利用生成的查询执行检索,确保结果符合用户需求。
from typing import List
from langchain_core.documents import Document
def retrieval(search: Search) -> List[Document]:
if search.publish_year is not None:
_filter = {"publish_year": {"$eq": search.publish_year}}
else:
_filter = None
return vectorstore.similarity_search(search.query, filter=_filter)
retrieval_chain = query_analyzer | retrieval
results = retrieval_chain.invoke("RAG tutorial published in 2023")
常见问题和解决方案
问题:API访问不稳定
解决方案:在某些地区,由于网络限制,可能需要通过API代理服务来提高访问稳定性。
问题:检索结果不准确
解决方案:检查查询分析的配置,确保字段和过滤条件得当。
总结与进一步学习资源
本文介绍了如何通过查询分析来提高搜索引擎的检索精度。希望这些技术能帮助您在实际项目中提升搜索效率。您可以进一步探索LangChain和OpenAI API的文档以深入了解。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—