ECMWF气象数据(ERA Interim和ERA 5)下载(1)

ECMWF的数据集

手动下载

ERA Interim[地址]正在逐步淘汰。强烈建议用户迁移到ERA5[地址]
ERA Interim中提供的最后日期为2019年8月31日。

下载中的相关参数介绍:
ERA5术语:分析和预测;时间和步长;瞬时、累积、平均速率和最小/最大参数
**术语“single levels”**用来表示变量是在一个垂直水平上计算的,该垂直水平可以是表面(或接近表面的水平)或大气中的专用压力水平。此目录条目中排除了多个垂直级别。;
**术语“pressure levels”**用于表示变量是在多个垂直水平上计算的,这些垂直水平在不同模型之间的数量和位置可能有所不同。
关于其他介绍可以参考这篇文章在这里插入图片描述
从图中可以看出,如果想要下载在分析数据资料,step应该选择0

Python批量下载:

批量下载,如果是ERA-INTERIM数据,则可以参考

如果是要下载ERA5数据,那么可以参考

  • ERA5使用脚本批量下载
  • 脚本文件中的相关参数设置及意义
    需要注意的是,在CDS中下载ERA5数据时,它有提供toolbox功能,不用在本地配置也可以下载根据脚本代码对需要下载的数据进行个性化定制,然后在toolbox网页面板中运行代码,就可以生成对应数据的下载链接。
    在这里插入图片描述
    上图是在pressure levels里下载1000hpa处相对湿度数据(2018年1、2、3月份按小时计算的月均值,河南省区域)里面的代码附后(有个小问题,下载下来的是2018年全年12个月的月平均数据,不是1,2,3月份的,还没找到原因)
    关于相对湿度数据,除了使用1000hpa处的数据代替外,也可以使用公式计算,可以参考这篇文章

在这里插入图片描述
上图是下载single levels里面的10m风速,2m温度,边界层高度,地表压力(2018年1、2、3月份按小时计算的月均值,河南省区域)里面的代码附后。

@ct.application(title='Retrieve Data')
@ct.output.download()
def retrieve_sample_data():
    """
    Application main steps:

    - retrieve a variable from CDS Catalogue
    - produce a link to download it.
    """

    data = ct.catalogue.retrieve(
        'reanalysis-era5-pressure-levels-monthly-means',
        {
            'variable': 'relative_humidity',
            'product_type': 'monthly_averaged_reanalysis_by_hour_of_day',
            'year': '2018',
            'month': [
                '01',
                '02',
                '03',
            ],
            'area':'37/110/31/117',
            'grid': ['0.1', '0.1'],
            'time': [
                '00:00', '01:00', '02:00',
                '03:00', '04:00', '05:00',
                '06:00', '07:00', '08:00',
                '09:00', '10:00', '11:00',
                '12:00', '13:00', '14:00',
                '15:00', '16:00', '17:00',
                '18:00', '19:00', '20:00',
                '21:00', '22:00', '23:00',
            ],
        }
    )
    return data
import cdstoolbox as ct


@ct.application(title='Retrieve Data')
@ct.output.download()
def retrieve_sample_data():
    """
    Application main steps:

    - retrieve a variable from CDS Catalogue
    - produce a link to download it.
    """

    data = ct.catalogue.retrieve(
        'reanalysis-era5-single-levels-monthly-means',
        {
            'format': 'netcdf',
            'product_type': 'monthly_averaged_reanalysis_by_hour_of_day',
            'variable':[
                '10m_wind_speed', 
                '2m_temperature', 
                'boundary_layer_height',
                'surface_pressure',
            ],
            'year': '2018',
            'month': [
                '01',
                '02',
                '03',
            ],
            'time': [
                '00:00', '01:00', '02:00',
                '03:00', '04:00', '05:00',
                '06:00', '07:00', '08:00',
                '09:00', '10:00', '11:00',
                '12:00', '13:00', '14:00',
                '15:00', '16:00', '17:00',
                '18:00', '19:00', '20:00',
                '21:00', '22:00', '23:00',
            ],
            'area':'37/110/31/117',
        },
    )
    return data

http://bbs.06climate.com/forum.php?mod=viewthread&tid=92921

### 关于大气边界层高度数据集 大气边界层高度(Planetary Boundary Layer Height, PBLH)是气象学研究中的重要参数之一,用于描述近地面大气层的高度范围,在此范围内空气混合较为强烈。对于获取PBLH的数据集,可以考虑以下几种资源: #### 1. **NASA AIRS 数据** NASA Atmospheric Infrared Sounder (AIRS) 提供的大气再分析产品中包含了PBLH的相关信息。具体来说,可以通过访问AIRS Level 3标准物理检索产品来获得这些数据[^4]。该产品的分辨率较高,覆盖全球范围,并提供了多种大气参数的估计值。 #### 如何下载? 用户可以从Goddard Earth Sciences Data and Information Services Center (GES DISC)网站上免费注册并下载所需数据。建议关注V006版本的产品文档以了解具体的变量定义及其计算方法。 #### 2. **ERA5 Reanalysis 数据** ERA5是由欧洲中期天气预报中心(ECMWF)发布的第五代全球气候再分析数据集,它也涵盖了PBLH的信息。ERA5具有高时间空间分辨率的特点,能够提供更精确的地表至高空各层次上的气象要素分布情况[^1]。 #### 获取方式: 访问Copernicus Climate Change Service (CDS)平台即可在线查询提取相关字段。需要注意的是,由于这是经过模型模拟得到的结果而非直接观测所得,因此可能存在一定的不确定性。 #### 3. **其他可能适用的数据源** 如果上述两个选项无法满足特定需求,则还可以考察一些专门针对局部区域开展实验所积累起来的小规模数据库;或者利用遥感技术手段反演得出相应结论。例如基于卫星微波辐射计测量原理构建而成的MODIS Aerosol Optical Depth(Layer_Optical_Depth_550)[^2]虽然主要服务于气溶胶监测领域,但在一定程度条件下也可以间接反映边界层状况变化趋势。 ```python import cdsapi c = cdsapi.Client() c.retrieve( 'reanalysis-era5-single-levels', { 'product_type': 'reanalysis', 'variable': 'planetary_boundary_layer_height', 'year': '2023', 'month': '01', 'day': [ '01','02','03' ], 'time': '12:00', 'format': 'netcdf' }, 'download.nc') ``` 以上脚本展示了如何通过Python接口调用CDS API实现自动化批量下载ERA5单层数据文件的操作流程示例。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值